
'

&

$

%

CSE 341:
Programming Languages

Dan Grossman

Spring 2004

Lecture 23— Multimethods; Static Typing for OO Languages

Dan Grossman CSE341 Spring 2004, Lecture 23 1



'

&

$

%

Multimethods

Remember our semantics for message send (with late-binding):

1. We use the receiver’s class to determine what method to call.

2. We evaluate the method body in an environment with self bound

to the receiver and the arguments bound to the parameters.

The second step does not really make self so special; we could

require methods to give an explicit name for this “0th” argument.

The first step does make self special; the classes of the other

arguments does not affect what method we call.

Multimethods let us do just that!

Dan Grossman CSE341 Spring 2004, Lecture 23 2



'

&

$

%

Why multimethods

Consider these reasonable methods:

"in Point"

distTo: p2

^ (((self getX - p2 getX) raisedTo:2))

+ ((self getY - p2 getY) raisedTo:2)) sqrt

"in 3DPoint"

distTo: p2

^ (((self getX - p2 getX) raisedTo:2))

+ ((self getY - p2 getY) raisedTo:2)

+ ((self getZ - p2 getZ) raisedTo:2) sqrt

What might happend when we do p distTo: q?

Dan Grossman CSE341 Spring 2004, Lecture 23 3



'

&

$

%

Multimethods Example

Neither Smalltalk nor Java has multimethods, so we have to make up

syntax.

multimeth p1@Point distTo: p2@Point

^ (((p1 getX - p2 getX) raisedTo:2))

+ ((p1 getY - p2 getY) raisedTo:2)) sqrt

multimeth p1@3DPoint distTo: p2@3DPoint

^ (((p1 getX - p2 getX) raisedTo:2))

+ ((p1 getY - p2 getY) raisedTo:2)

+ ((p1 getZ - p2 getZ) raisedTo:2) sqrt

Now we’re commutative and we can change the behavior for “one

Point and one 3DPoint” by writing two more methods (and one can

call the other)

Dan Grossman CSE341 Spring 2004, Lecture 23 4



'

&

$

%

Thoughts on multimethods

On the one hand, multimethods are “more OO” because they do more

late-binding which is the essence of OO.

On the other hand, they are “less OO” because if the “0th” argument

isn’t special, then the semantics is less “receiver-oriented” so it’s less

tied to the “interacting objects” analogy.

And there are pragmatic questions like:

• where do programmers define multimethods

• how does the implementation build the necessary tables for

resolving message-sends

• what if there’s “no best match”?

Dan Grossman CSE341 Spring 2004, Lecture 23 5



'

&

$

%

Static Typing for OO

Remember, any sound static type system prevents certain errors.

In ML, we never treated numbers as strings or functions, etc.

For an OO language, what’s the most conventional guarantee for a

type system?

• Program execution will not send a not-understood message

• Except for nil?

Is that it?

• Pretty much; that’s all Smalltalk programs do

• And it’s not that easy to be sound and useful

• With multimethods or static overloading (coming later), we can

also seek to prevent “no best match” errors

Dan Grossman CSE341 Spring 2004, Lecture 23 6



'

&

$

%

The plan

• A “from first principles” approach to object-types

– For objects with just getters and setters

– The need for subtyping

– Digression to ML records

∗ Immutability makes more things subtypes

– Considering methods

∗ Arguments are “contravariant”

• Next time: continue; connect this up with classes and interfaces

Warning: Lots of jargon, but ideas are very important

Dan Grossman CSE341 Spring 2004, Lecture 23 7



'

&

$

%

Types for “simple” objects

Assume for simplicity that if an object has a field x, then it has

methods x (getter) and x: (setter).

For an expression like e x, our type system just needs to ensure e has

a field x.

But what about an expression like (e x) y? Or ((e x) y) z?

Or ((e x:e2) x) y?

The key point: It’s not enough to know e evaluates to an object with

an x field. We need to know what messages the contents of that field

accepts (and so on).

Dan Grossman CSE341 Spring 2004, Lecture 23 8



'

&

$

%

Types for getter/setter objects

A type is just a list of typed fields:

t ::= [x1:t1, ..., xn:tn]

Okay, it’s not quite that simple: We’ll want some way to define

recursive types. For example:

int = ... "not shown because we do not have methods"

intList = [x:int, lst:intList]

But wait, if we define a class I for making things of type intList,

then I new won’t have the right type. Solutions:

• Initialized an intList some other way. (Not good enough unless

you make a cycle!)

• Let nil have type intList, though it “should” have type [].

Dan Grossman CSE341 Spring 2004, Lecture 23 9



'

&

$

%

Some actual typing rules

• Let nil have any type.

• A class declaration should give types for instance variables; making

an instance returns something with those fields and types.

• If e has type [... xi:ti ...], then e xi has type ti.

• If e has type [... xi:ti ...] and e2 has type ti, then e

xi:e2 has type ti.

So:

• These types are mostly “each-of” types (for the fields).

• But the first rule makes them all “one-of” types; the

implementation must check for nil and raise an error.

So far, just like ML records, but fields are mutable.

Dan Grossman CSE341 Spring 2004, Lecture 23 10



'

&

$

%

Subtyping

Subtyping is not a matter of opinion!

Substitutability: If some code needs a t1, is it always sound to give it

a t2 instead? If so, we can allow t2<:t1.

A couple more formal facts follow immediately:

• A “subsumption” rule: If e has type t2 and t2<:t1, then e has

type t1.

• Transitivity: If t3<:t2 and t2<:t1, then t3<:t1.

Okay, but what are some good notions of substitutability for our

getter/setter objects:

• “Width”: [x1:t1 ... xn:tn y:t] is a subtype of [x1:t1

... xn:tn].

• “Permutation”: order of fields doesn’t matter

Dan Grossman CSE341 Spring 2004, Lecture 23 11



'

&

$

%

What about “depth”

A “depth” subtyping rule says: If ti<:t, then [x1:t1 ... xi:ti

... xn:tn] is a subtype of [x1:t1 ... xi:t ... xn:tn].

Example: t1=[x:[] y:[z:[]]], t2 = [x:[] y:[]], t1 <: t2.

Sounds great: If you expect an object whose y field has no fields, it’s

no problem to give an object whose y field has a z field.

This is wrong!!! Suppose I can build objects “directly” (where {} is an

object with no fields.

t1 o1 = {x={}, y={z={}}}.

t2 o2 = o1. "use subsumption"

o2 y: {}.

(o1 y) z "error!"

Now you know why a Java subclass cannot change a field’s type, even

to a subtype (but they botched arrays)!

Dan Grossman CSE341 Spring 2004, Lecture 23 12



'

&

$

%

Depth and Mutability

ML records are like are getter/setter objects without setters.

ML doesn’t have subtyping, but that’s just because of type inference.

If fields are immutable, then depth subtyping is sound!

Our example (and all such examples) relies on mutation.

Yet another advantage of immutability: you get more substitutability

because programs can do less.

Dan Grossman CSE341 Spring 2004, Lecture 23 13



'

&

$

%

Methods

So field types must be invariant, else the getter or setter methods in

the subtype will have an unsound type:

• If the field becomes a subtype, the getter is wrong (see 2 slides

ago).

• If the field becomes a supertype, the setter is wrong.

But this is really just an example of a more general phenomenon: If a

supertype has a method m taking arguments of types t1, ..., tn and

returning an argument of type t0, what can m take and return in a

subtype?

Since this is more general, let’s forget about fields:

t ::= [t10 m1:(t11,...), ..., tn0 mn(tn1,...)]

Now, when is t1<:t2?

Dan Grossman CSE341 Spring 2004, Lecture 23 14



'

&

$

%

Method Subtyping, part 1

One sound answer: A subtype can have more methods and rearrange

methods, but a method m must take arguments of the same type and

return arguments of the same type.

(This answer corresponds to Java and C++ because they also support

static overloading, which we’ll discuss later.)

Can we be less restrictive and still sound?

Yes: We can let the return type be a subtype. Why:

• Some code calling m will “know more” about what’s returned.

• Other code calling m will “still work” because of substitutability.

But what about the argument types...

Allowing subtypes is not sound!

Dan Grossman CSE341 Spring 2004, Lecture 23 15



'

&

$

%

Method Subtyping, part 2

What if we allow argument types to be supertypes? It’s sound! Why:

• Some code calling m can pass a larger collection of arguments.

• Other code calling m will “still work” because of substitutability.

The jargon: Method subtyping is “contravariant” in argument types

and “covariant” in return types.

The point: One method is a subtype of another if the arguments are

supertypes and the result is a subtype.

This is easily one of the 5 most important points in this course.

Never, ever think argument-types are covariant. You will be

tempted many times. You will never be right. Tell your

friends a guy with a PhD jumped up and down!

Dan Grossman CSE341 Spring 2004, Lecture 23 16



'

&

$

%

Connection to FP
Functions and methods are quite similar.

When is t1->t2 a subtype of t3->t4?

When t3 is a subtype of t1 and t2 is a subtype of t4.

Why the contravariance? For substitutability—a caller can “still” use a

t3.

Advanced point: Is there any difference? Yes, remember methods also

take a self argument bound late.

• And in a subtype, we can assume self has the subtype

• But that makes it a covariant argument-type!

• This is sound because cannot change the fact that a particular

value (bound to self) is passed.

• This is roughly why encoding late-binding in ML is awkward.

Dan Grossman CSE341 Spring 2004, Lecture 23 17


