
'

&

$

%

CSE 341:
Programming Languages

Dan Grossman

Spring 2004

Lecture 17— Closure Conversion

Dan Grossman CSE341 Spring 2004, Lecture 17 1



'

&

$

%

Today

• Some terminology and motivation for language translation

• The closure-conversion source-to-source translation

• Some specifics for your homework

Why learn closure conversion:

• Help reason about functional programs

• Explicit closure construction is an idiom in languages without

first-class functions

• A great example of source-to-source transformation

Dan Grossman CSE341 Spring 2004, Lecture 17 2



'

&

$

%

Language Translation

One way to implement a language is to translate it to another

language (that presumably has an implementation).

Equivalence is, of course, key.

In translation, there are 3 languages involved (source, target,

translation-implementation (a.k.a. meta))

If source-language = target-language, called a source-to-source

translation. If result is a subset, it can simplify the implementation.

HW5:

• source-language = target-language = “minfun”

• meta-language = Scheme

• target has no functions with free variables

Dan Grossman CSE341 Spring 2004, Lecture 17 3



'

&

$

%

Embedded Language

To add a bit more confusion:

• “minfun” abstract-syntax is written with Scheme expressions

(using a bunch of define-struct definitions)

• the implementation for the target is written in Scheme (a function

called evaluate)

But we saw this in HW3 too: We embedded the “propositional logic”

language in ML and implemented it with an ML function (called eval)

One new twist because I’m nice:

• There’s also a Scheme function parse for converting “minfun”

concrete syntax to “minfun” abstract syntax.

• But this is just for writing tests; closure-conversion operates on

abstract syntax (using make- and selector functions).

Dan Grossman CSE341 Spring 2004, Lecture 17 4



'

&

$

%

Closure Conversion

For any program, we need an equivalent program where any function

body accesses data only through its parameters.

So (fun (x) (fun (y) (+ x y)) is no good.

Key idea: Change the program to keep track of environments itself,

rather than relying on the implementation.

(This is roughly what compilers for functional languages do.)

Dan Grossman CSE341 Spring 2004, Lecture 17 5



'

&

$

%

The key ideas

This is the rough idea for (fun (x) (fun (y) (+ x y))).

1. Have code take an extra argument.

• (fun (y) e) becomes (fun (env y) e’)

2. Translate functions to pairs of code and environment.

• (fun (y) e) becomes (pr (fun (env y) e’) lst) where

lst is a list of the variables in scope (where the function is

defined).

3. Free-variables become environment-access expressions.

• e becomes (+ (fst env) y).

4. Function application must pass environment (next page)

Dan Grossman CSE341 Spring 2004, Lecture 17 6



'

&

$

%

Function Application

Given (app e1 e2), e1 will be translated to a pair of code and

environment.

So we want something like (in pseudocode)

let closure = e1

let arg = e2

((#1 closure) (#2 closure) arg)

But we don’t have let, so you have to do this with a new function of

two arguments (no big deal).

In other words, we extract the code and pass it the environment and

the “real” argument.

Dan Grossman CSE341 Spring 2004, Lecture 17 7



'

&

$

%

Arbitrary Depth

When we are translating a program and we reach a function or

free-variable, we may already be inside any number of outer functions.

For variables:

• We need an ordered list (a stack) of free variables and the

environment-variable for the result, so we can create an expression

that, at run-time, gets the right element from the list.

• We also need the local variable(s) so we don’t do anything to

them.

For functions, we build a pair:

• The pair’s environment is a list made out of the local variable(s)

added to the (outer) environment-variable for the result.

• The pair’s code is a function with one more argument and the

body translated (with appropriate free-variable stack, etc.)

Dan Grossman CSE341 Spring 2004, Lecture 17 8



'

&

$

%

Everything Else and Fresh Variables

For all the other cases, just recursively convert.

Homework complicated slightly by “what if you’re not in a function”.

The fun and app cases require us to make up new variable names.

• They better not shadow or get shadowed.

• Scheme has a primitive gensym that is just what we need.

– Every time you evaluate (gensym) you get a symbol that has

never been used before.

– Example: make an increment function with a fresh name:

(let ([x (gensym)])

(make-fun (list x) (add x 1)))

Dan Grossman CSE341 Spring 2004, Lecture 17 9


