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CSE 341:
Programming Languages

Dan Grossman

Spring 2004

Lecture 17— Closure Conversion
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Today

• Some terminology and motivation for language translation

• The closure-conversion source-to-source translation

• Some specifics for your homework

Why learn closure conversion:

• Help reason about functional programs

• Explicit closure construction is an idiom in languages without

first-class functions

• A great example of source-to-source transformation
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Language Translation

One way to implement a language is to translate it to another

language (that presumably has an implementation).

Equivalence is, of course, key.

In translation, there are 3 languages involved (source, target,

translation-implementation (a.k.a. meta))

If source-language = target-language, called a source-to-source

translation. If result is a subset, it can simplify the implementation.

HW5:

• source-language = target-language = “minfun”

• meta-language = Scheme

• target has no functions with free variables
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Embedded Language

To add a bit more confusion:

• “minfun” abstract-syntax is written with Scheme expressions

(using a bunch of define-struct definitions)

• the implementation for the target is written in Scheme (a function

called evaluate)

But we saw this in HW3 too: We embedded the “propositional logic”

language in ML and implemented it with an ML function (called eval)

One new twist because I’m nice:

• There’s also a Scheme function parse for converting “minfun”

concrete syntax to “minfun” abstract syntax.

• But this is just for writing tests; closure-conversion operates on

abstract syntax (using make- and selector functions).
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Closure Conversion

For any program, we need an equivalent program where any function

body accesses data only through its parameters.

So (fun (x) (fun (y) (+ x y)) is no good.

Key idea: Change the program to keep track of environments itself,

rather than relying on the implementation.

(This is roughly what compilers for functional languages do.)
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The key ideas

This is the rough idea for (fun (x) (fun (y) (+ x y))).

1. Have code take an extra argument.

• (fun (y) e) becomes (fun (env y) e’)

2. Translate functions to pairs of code and environment.

• (fun (y) e) becomes (pr (fun (env y) e’) lst) where

lst is a list of the variables in scope (where the function is

defined).

3. Free-variables become environment-access expressions.

• e becomes (+ (fst env) y).

4. Function application must pass environment (next page)
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Function Application

Given (app e1 e2), e1 will be translated to a pair of code and

environment.

So we want something like (in pseudocode)

let closure = e1

let arg = e2

((#1 closure) (#2 closure) arg)

But we don’t have let, so you have to do this with a new function of

two arguments (no big deal).

In other words, we extract the code and pass it the environment and

the “real” argument.
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Arbitrary Depth

When we are translating a program and we reach a function or

free-variable, we may already be inside any number of outer functions.

For variables:

• We need an ordered list (a stack) of free variables and the

environment-variable for the result, so we can create an expression

that, at run-time, gets the right element from the list.

• We also need the local variable(s) so we don’t do anything to

them.

For functions, we build a pair:

• The pair’s environment is a list made out of the local variable(s)

added to the (outer) environment-variable for the result.

• The pair’s code is a function with one more argument and the

body translated (with appropriate free-variable stack, etc.)
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Everything Else and Fresh Variables

For all the other cases, just recursively convert.

Homework complicated slightly by “what if you’re not in a function”.

The fun and app cases require us to make up new variable names.

• They better not shadow or get shadowed.

• Scheme has a primitive gensym that is just what we need.

– Every time you evaluate (gensym) you get a symbol that has

never been used before.

– Example: make an increment function with a fresh name:

(let ([x (gensym)])

(make-fun (list x) (add x 1)))
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