
'

&

$

%

CSE 341:
Programming Languages

Dan Grossman

Spring 2004

Lecture 16— Continuations and Related Idioms

Dan Grossman CSE341 Spring 2004, Lecture 16 1



'

&

$

%

Today

• What are continuations?

• What does let/cc mean?

• How do continuations provide exception-like behavior?

• Related idiom not using let/cc: iterators

Time permitting: How “time travel” makes continuations so powerful

(and easy to misuse).

Dan Grossman CSE341 Spring 2004, Lecture 16 2



'

&

$

%

Programs with holes

Consider:

(+ 3 (* 2 �))

What does this “program with a hole” mean?

“If you put a value v in the hole, the result is two times v plus 3.”

That sounds like a function where the “function body” is the “rest of

computation”.

A continuation is “the rest of computation”.

A language with “first-class continuations” lets you “get at

continuations”. Most let you treat them as functions (with weird

semantics).

Dan Grossman CSE341 Spring 2004, Lecture 16 3



'

&

$

%

The let/cc primitive

(let/cc k e)

• Bind k to the current continuation (the rest of computation), a

“function” that given a value (for a hole), completes computation.

• Evaluate e to v and the result is v

• But: Calling the continuation (e.g., (k 7)) means “forget

everything else, the rest of computation is now the continuation

with 7 in the hole”.

Examples:

(+ 1 (let/cc k (+ 2 (if x 3 (k 4)))))

((lambda (pr) (if (= (car pr) 0) 7 ((cdr pr) (cons 0 #f))))

(let/cc k (cons 3 k)))

Dan Grossman CSE341 Spring 2004, Lecture 16 4



'

&

$

%

Connection with exceptions

Instead of building exceptions into our language, we can:

• Pass in a continuation (or store it in a mutable global if you must)

• Call the continuation to “forget what you are doing” and transfer

control to an outer “rest of computation”

Dan Grossman CSE341 Spring 2004, Lecture 16 5



'

&

$

%

A lower-level view

Continuations really are defined in terms of “holes” and “rest of

computation”.

But it’s often easier to reason in terms of a “call-stack”

implementation.

In this view:

• let/cc wraps the current call-stack in a special function

• Calling a continuation replaces the now-current call-stack with the

one at the time of let/cc

And that’s where “time travel” comes in: you can switch to a

call-stack that without continuations would have not been needed any

more!

Killer app: user-level non-preemptive threads!

Dan Grossman CSE341 Spring 2004, Lecture 16 6



'

&

$

%

Some perspective

Continuations are perhaps too powerful and difficult to use well.

Non-advanced programmers stay away from them.

But it’s nice to think more generally about:

• Languages with more powerful “control operators” than if and

function application (languages used to not have exceptions either)

• Programming styles (idioms) that exploit the idea of “rest of

computations”

Example of the latter: iterator over trees

Dan Grossman CSE341 Spring 2004, Lecture 16 7


