
'

&

$

%

CSE 341:
Programming Languages

Dan Grossman

Spring 2004

Lecture 1— Course Introduction

Dan Grossman CSE341 Spring 2004, Lecture 1 1



'

&

$

%

Welcome!
We have 10 weeks to learn different paradigms and fundamental

concepts of programming languages.

With diligence, patience, and an open mind, this course makes you a

much better programmer (in languages we won’t use).

Today in class:

• Course mechanics

• Course overview and a rain-check on motivation

• Dive into ML (homework 1 due Wednesday April 7)

In the next 24 hours:

• Join the class mailing list

• Email homework 0 (worth 0 points) to me

http://www.cs.washington.edu/education/courses/cse341/04sp/

Dan Grossman CSE341 Spring 2004, Lecture 1 2



'

&

$

%

Who and What

• 3 class meetings (slides, code, and questions)

– Material on-line after class, but take notes.

• 1 section (David Richardson)

– Essential material on tools, style, examples, language-features,

...

• Office hours (Evan Martin, David, me)

– Use them!!!

Dan Grossman CSE341 Spring 2004, Lecture 1 3



'

&

$

%

Homeworks

• Approximately weekly (1 or 2 “double homeworks” later)

• Doing the homework involves:

1. Understanding the concepts being addressed

2. Writing code demonstrating understanding of the concepts

3. Testing your code to ensure you understand

4. “Playing around” with variations, incorrect answers, etc.

You turn in only (2), but focusing on (2) makes the homework

harder

Collaboration: The Gilligan’s Island Rule

Extra Credit: Terrible use of your time grade-wise, but great otherwise

Dan Grossman CSE341 Spring 2004, Lecture 1 4



'

&

$

%

Academic Integrity

Read every word of the course policy very carefully.

Always explain any unconventional action on your part.

Promoting and enforcing academic integrity has been a personal focus

of mine for 11 years now:

• I trust you completely

• I have no sympathy for trust violations, nor should you

Honest work is the most important feature of a university.

Dan Grossman CSE341 Spring 2004, Lecture 1 5



'

&

$

%

Exams

• Midterm: April 28 in class

• Final: June 10, 8:30–10:20

• Do not miss them

Same concepts, but very different format from homework.

Dan Grossman CSE341 Spring 2004, Lecture 1 6



'

&

$

%

Now where were we?
Meetings, homeworks, and exams. . . about what?

Programming languages:

• Essential concepts relevant in any language

• Specific examples “in natural setting” using ML, Scheme, and

Smalltalk

• Focus on “functional languages” because they are simpler and

teach good practices

First half of course uses ML:

• Gives us time to build knowledge before “starting over”

• But we need to get comfortable with the basics and environment

as soon as possible.

• “Let go of Java” for now (we will return to it)

Dan Grossman CSE341 Spring 2004, Lecture 1 7



'

&

$

%

A strange environment

The ML part of the course uses:

• The emacs editor

• A read-eval-print loop for evaluating programs

• Available on Windows and UNIX in the lab, but remotely via UNIX

We have prepared “getting started” materials, but leave plenty of time

for the content of homework 1.

• Read the materials

• Attend section

• Then ask questions fast (wasted hours are wasted hours)

Adjusting to new environments is a “CS life skill”

Dan Grossman CSE341 Spring 2004, Lecture 1 8



'

&

$

%

Before we dive in

We’ll return to the course goals and “why learn something other than

C/C++/Java/Perl” next week or so.

But one more thing about the course:

• I know this has not always been the most popular course

• Let’s change that

Dan Grossman CSE341 Spring 2004, Lecture 1 9



'

&

$

%

ML, from the beginning

• A program is a sequence of bindings

• One kind of binding is a variable binding

val x = e ; (semicolon optional in a file)

• A program is evaluated by evaluating the bindings in order

• A variable binding is evaluated by:

– Evaluating the expression in the environment created by the

previous bindings. This produces a value.

– Extending the (top-level) environment to bind the variable to

the value.

Much easier to understand with an example...

Dan Grossman CSE341 Spring 2004, Lecture 1 10



'

&

$

%

That was a lot at once
• “Atomic” expressions so far: variables and constant integers

• “Compound” expressions so far: addition, subtraction, less than,

conditionals

• Types: every expression has a type. So far, int, bool, unit

• The read-eval-print loop:

– Enter a sequence of bindings. For each, it tells you the value

and type of the new binding

– If you just enter e;, then that is the same as val it = e;

– use "foo.sml" enters the bindings in a file, and then binds

it to (), which has type unit

– Messages like “GC #0.0.0.0.1.18: (0 ms)” are stupid

– Illegal expressions lead to (bad) error messages and no change

to the environment

Dan Grossman CSE341 Spring 2004, Lecture 1 11



'

&

$

%

Parts worth repeating

Our very simple program demonstrates many critical language

concepts:

• Expressions have a syntax (written form)

– E.g.: A constant integer is written as a digit-sequence

– E.g.: Addition expression is written e1 + e2

• Expressions have types given their environment

– E.g.: In any environment, a constant integer has type int

– E.g.: If e1 and e2 have type int in the current environment,

then e1+e2 has type int

• Expressions evaluate to values given their environment

– E.g.: In any environment, a constant integer evaluates to itself

– E.g.: If e1 and e2 evaluate to c1 and c2 in the current

environment, then e1+e2 evaluates to the sum of c1 and c2

Dan Grossman CSE341 Spring 2004, Lecture 1 12



'

&

$

%

More expression forms

What are the syntax-rules, typing-rules, and evaluation-rules for:

• variables

• less-than comparisons

• conditional expressions

Dan Grossman CSE341 Spring 2004, Lecture 1 13



'

&

$

%

Lots more to do

We have many more types, expression forms, and binding forms to

learn before we can write “anything interesting”.

Must develop resilience to mistakes and bad messages. Example

gotcha: x = 7 instead of val x = 7.

Rest of the week: functions, pairs, lists, and local bindings

But there are some things we will not add:

• assignment: changing the value of an environment binding

– make a new binding instead

• statements: expressions will do just fine, thank you

• loop-constructs: recursive functions are more powerful

Dan Grossman CSE341 Spring 2004, Lecture 1 14



'

&

$

%

What is a programming language?

Here are separable concepts for defining and evaluating a language:

• syntax: how do you write the various parts of the language?

• semantics: what do programs mean? (One way to answer: what

are the evaluation rules?)

• idioms: how do you typically use the language to express

computations?

• libraries: does the language provide “standard” facilities such as

file-access, hashtables, etc.? How?

• tools: what is available for manipulating programs in the

language?

Dan Grossman CSE341 Spring 2004, Lecture 1 15


