
CSE 341, Spring 2004, Assignment 2
Due: Friday 16 April, 9:00AM

Last updated: 2 April

You will write seven functions and one type definition, in addition to using several datatype and type
definitions we give you. One part of this assignment has to do with poker chips; the other part has to do
with moving around a plane (the kind from math with an x-axis and a y-axis). No knowledge about chips
is assumed. A little geometry is assumed, but just ask if something is unclear.

Your solutions must use pattern-matching. You may not use the functions null, hd, or tl, nor may you
use anything containing a # character. You may not use mutation. Style matters.

1. A chip is one of three colors, as this binding suggests:

datatype chip = Blue | Red | White

One way to represent a “chip collection” is as a list of chips. Another way is with a data structure
that records only “how many of each color” are in the collection. Each color has a cost : 25 for Blue,
5 for Red, 1 for White. The cost of a collection is the sum of the costs of the chips in the collection.

(a) Define a type chip_summary that represents a chip collection with the “how many of each color
approach”. Use a record type.

(b) Define a function chip_list_to_summary that takes a list of chips and evaluates to the chip_summary
that represents the same collection.

(c) Define a function summary_to_chip_list that takes a chip_summary and evaluates to a list of
chips that represents the same collection.

(d) Define a function chip_list_value_1 that takes a list of chips and evaluates to the list’s cost.
Your solution must not use any other functions.

(e) Define a function chip_list_value_2 that takes a list of chips and evaluates to the list’s cost.
Use chip_list_to_summary in your definition.

Food for thought: Why does part (b) say “evaluates to the” whereas part (c) says “evaluates to a”?

2. This part uses these bindings:

type pos = real * real
type radians = real
datatype dir = Left | Right
datatype move = Forward of real | Turn of dir * radians | Home

Assume the usual x,y coordinate system with origin (0.0, 0.0). A pos represents a position on the plane;
the first component is the x-coordinate. There are 2π radians in a circle. Moves have this meaning:

• Forward d: “go in the direction you are facing a distance of d” (A negative d means backwards.)

• Turn(Left,r): “starting from the direction you are facing, rotate counter-clockwise r radians”

• Turn(Right,r): “starting from the direction you are facing, rotate clockwise r radians”
(A negative number means rotate the other way.)

• Home: “go to position (0.0, 0.0) and face “East” (0.0 radians)”

Note: ML does not implicitly convert from int to real (i.e., floating-point numbers). Write 0.0, not
0, for example.

(a) Define a function advance that takes 3 arguments: A “current position” of type pos, an “angle”
of type radians, and a “distance” of type real and returns the position one reaches by going
length “distance” at angle “angle” starting at “current position”. Hints:

1

• In geometry, ∆x = d cos θ and ∆y = d sin θ.
• In ML, the library functions Math.cos and Math.sin take a value in radians and evaluate to

what you think.
(b) Define a function end_point that takes a list of moves and returns the position one would end

up at after following the moves. Assume you start at the origin facing East. Hints:
• Use another (possibly local) function.
• To turn Left, you add radians. To turn Right, you subtract radians.

(c) Define a function visit that takes a list of positions and evaluates to a list of moves. Starting at
the origin and executing the moves would cause one to visit the list of positions in order. Hints:
• In geometry, the radians of the angle from East to the line vector going from (x1, y1) and

(x2, y2) is arctan(y2−y1
x2−x1

) if x2 − x1 is positive and arctan(y2−y1
x2−x1

) + π if x2 − x1 is negative.

• In geometry, the distance from (x1, y1) to (x2, y2) is
√

(x2 − x1)2 + (y2 − y1)2.
• In ML, the library has Math.atan, Math.sqrt, and Math.pi, which are what you think.
• Use another (possibly local) function. Given the next position, and the current position,

compute the new angle and the distance. Given the current angle, turn left the difference
between the new and current angle.

• It is fine to turn negative angles.
(d) Extra Credit Define a function remove_dizziness that takes a list of moves and evaluates to

a list of moves. Both lists must cause one to visit the same positions in the same order. But the
result list must have these properties:
• Every Forward move has a distance strictly greater than 0.
• Every Turn move has an angle strictly greater than 0 and less than or equal to π.
• It may not have more Turn moves than the original list has total moves.
• It may not have more Home moves than the original list.

Hints:
• You may find Real.abs, Real.rem, and Real.minPos useful.
• Because floating-point is subject to rounding errors, you should never compare two floating-

point numbers for equality. To test if a value of type real “is” 0.0, you need to see if its
absolute value is less than the minimum positive floating-point number (Real.minPos).

Type Summary: Evaluating a correct homework solution should include these bindings (but it is fine
for your definition of chip_summary to appear where chip_summary appears below because the two types
are synonyms):

val chip_list_to_summary = fn : chip list -> chip_summary
val summary_to_chip_list = fn : chip_summary -> chip list
val chip_list_value_1 = fn : chip list -> int
val chip_list_value_2 = fn : chip list -> int
val advance = fn : (real * real) * real * real -> real * real
val end_point = fn : move list -> real * real
val visit = fn : (real * real) list -> move list

Of course, generating these bindings does not guarantee that your solutions are correct: Test your functions.

Turn-in Instructions

• Put all your solutions in one file, lastname hw2.sml, where lastname is replaced with your last name.

• Line 1 of your .sml file should include an ML comment with your name and the phrase homework 2.

• Email your solution to martine@cs.washington.edu.

• The subject of your email should be exactly [cse341-hw2].

• Your .sml file should be an attachment.

2

