CSE 341: Programming Languages

Dan Grossman
Fall 2004
Lecture 2—ML functions, pairs, and lists
What is a programming language?

Here are separable concepts for defining and evaluating a language:

- syntax: how do you write the various parts of the language?
- semantics: what do programs mean? (One way to answer: what are the evaluation rules?)
- idioms: how do you typically use the language to express computations?
- libraries: does the language provide “standard” facilities such as file-access, hashtables, etc.? How?
- tools: what is available for manipulating programs in the language?
Our focus

This course: focus on semantics and idioms to make you a better programmer

Reality: Good programmers know semantics, idioms, libraries, and tools

Libraries are crucial, but you can learn them on your own.
Goals for today

• Add some more absolutely essential ML constructs
• Discuss lots of “first-week” gotchas
• Enough to do first 5 homework problems (next 3 after Monday)
 – And we will learn better constructs soon

Note: These slides make much more sense in conjunction with lec2.sml.

Recall a program is a sequence of bindings...
Function Definitions

... A second kind of binding is for functions

Syntax: \[\text{fun } x_0 \ (x_1 : t_1, \ldots, x_n : t_n) = e \]

Typing rules:

1. Context for \(e \) is (the function’s context extended with) \(x_1 : t_1, \ldots, x_n : t_n \) and:

2. \(x_0 : (t_1 \ast \ldots \ast t_n) \rightarrow t \) where:

3. \(e \) has type \(t \) in this context

(This “definition” is circular because functions can call themselves and the type-checker “guessed” \(t \).)

(It turns out in ML there is always a “best guess” and the type-checker can always “make that guess”. For now, it’s magic.)

Evaluation: \[\text{A FUNCTION IS A VALUE.} \]
Function Applications (a.k.a. Calls)

Syntax: \(e_0 (e_1, \ldots, e_n) \)

Typing rules (all in the application’s context):

1. \(e_0 \) must have some type \((t_1 \times \ldots \times t_n) \rightarrow t\)
2. \(e_i \) must have type \(t_i\) (for \(i=1, \ldots, i=n\))
3. \(e_0 (e_1, \ldots, e_n) \) has type \(t\)

Evaluation rules:

1. \(e_0 \) evaluates to a function \(f\) in the application’s environment
2. \(e_i \) evaluates to value \(v_i\) in the application’s environment
3. result is \(f\)’s body evaluated in an environment extended to bind \(x_i\) to \(v_i\) (for \(i=1, \ldots, i=n\)).

(“an environment” is actually the environment where \(f\) was defined)
Some Gotchas

- The * between argument types (and pair-type components) has nothing to do with the * for multiplication

- In practice, you almost never have to write argument types
 - But you do for the way we will use pairs in homework 1
 - And it can improve error messages and your understanding
 - But type inference is a very cool thing in ML
 - Types unneeded for other variables or function return-types

- Context and environment for a function body includes:
 - Previous bindings
 - Function arguments
 - The function itself
 - But not later bindings
Recursion

- A function can be defined in terms of itself.
- This “makes sense” if the calls to itself (recursive calls) solve “simpler” problems.
- This is more powerful than loops and often more convenient.
- Many, many examples to come in 341.
Pairs

Our first way to build *compound data* out of simpler data:

- Syntax to build a pair: \((e_1,e_2)\)

- If \(e_1\) has type \(t_1\) and \(e_2\) has type \(t_2\) (in current context), then \((e_1,e_2)\) has type \(t_1 \times t_2\).
 - (I wish it were \((t_1, t_2)\), but it isn’t.)

- If \(e_1\) evaluates to \(v_1\) and \(e_2\) evaluates to \(v_2\) (in current environment), then \((e_1, e_2)\) evaluates to \((v_1, v_2)\).
 - (Pairs of values are values.)

- Syntax to get part of a pair: \(#1 \ e\) or \(#2 \ e\).

- Type rules for getting part of a pair: _______________________

- Evaluation rules for getting part of a pair: _______________________

Dan Grossman CSE341 Fall 2004, Lecture 2 9
Lists

We can have pairs of pairs of pairs... but we still “commit” to the amount of data when we write down a type.

Lists can have any number of elements:

- [] is the empty list
- More generally, [v1, v2, ..., vn] is a length n list
- If e1 evaluates to v and e2 evaluates to a list [v1, v2, ..., vn], then e1::e2 evaluates to [v, v1, v2, ..., vn].
- null e evaluates to true if and only if e evaluates to []
- If e evaluates to [v1, v2, ..., vn], then hd e evaluates to v1 and tl e evaluates to [v2, ..., vn].
 - If e evaluates to [], a run-time exception is raised (this is different than a type error; more on this later)
List types

A given list’s elements must all have the same type.

If the elements have type t, then the list has type t list. Examples: int list, (int*int) list, (int list) list.

What are the type rules for ::, null, hd, and tl?

- Possible exceptions do not affect the type.

Hmm, that does not explain the type of []?

- It can have any list type, which is indicated via ’a list.
- That is, we can build a list of any type from [].
- **Polymorphic** types are 3 weeks ahead of us.
 - Teaser: null, hd, and tl are not keywords!
Recursion again

Functions over lists that depend on all list elements will be recursive:

- What should the answer be for the empty list?
- What should they do for a non-empty list? (In terms of answer for the tail of the list.)

Functions that produce lists of (potentially) any size will be recursive:

- When do we create a small (e.g., empty) list?
- How should we build a bigger list out of a smaller one?