
CSE333, Winter 2023L23: Concurrency and Threads

1

pollev.com/cse333

About how long did Exercise 11 take you?

A. [0, 2) hours
B. [2, 4) hours
C. [4, 6) hours
D. [6, 8) hours
E. 8+ Hours
F. I didn’t submit / I prefer not to say

CSE333, Winter 2023L23: Concurrency and Threads

Concurrency: Threads
CSE 333 Winter 2023

Instructor: Justin Hsia

Teaching Assistants:

Adina Tung Danny Agustinus Edward Zhang

James Froelich Lahari Nidadavolu Mitchell Levy

Noa Ferman Patrick Ho Paul Han

Saket Gollapudi Sara Deutscher Tim Mandzyuk

Timmy Yang Wei Wu Yiqing Wang

Zhuochun Liu

CSE333, Winter 2023L23: Concurrency and Threads

Relevant Course Information

❖ Exercise 12 released today, due Wednesday (3/8)

▪ Concurrency via pthreads

❖ Homework 4 due next Thursday (3/9)

▪ Submissions accepted until Sunday (3/12)

❖ Please fill out the course evaluations for lecture and your
section next week!

❖ Final will be open from Monday through Wednesday of
Finals Week (3/13-15)

▪ Same policies as the midterm

▪ ex8-ex12, hw3-hw4, overall course questions
3

CSE333, Winter 2023L23: Concurrency and Threads

Threads

❖ Threads are like lightweight processes

▪ They execute concurrently like processes

• Multiple threads can run simultaneously on multiple CPUs/cores

▪ Unlike processes, threads cohabitate the same address space

• Threads within a process see the same heap and globals and can
communicate with each other through variables and memory

– But, they can interfere with each other – need synchronization for shared
resources

• Each thread has its own stack

❖ Analogy: restaurant kitchen

▪ Kitchen is process

▪ Chefs are threads

4

CSE333, Winter 2023L23: Concurrency and Threads

Single-Threaded Address Spaces

❖ Before creating a thread

▪ One thread of execution running
in the address space

• One PC, stack, SP

▪ That main thread invokes a
function to create a new thread

• Typically pthread_create()

5

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SPparent

PCparent

CSE333, Winter 2023L23: Concurrency and Threads

Multi-threaded Address Spaces

❖ After creating a thread

▪ Two threads of execution running
in the address space

• Original thread (parent) and new
thread (child)

• New stack created for child thread

• Child thread has its own values of
the PC and SP

▪ Both threads share the other
segments (code, heap, globals)

• They can cooperatively modify
shared data

6

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SPparent

PCparent

Stackchild
SPchild

PCchild

CSE333, Winter 2023L23: Concurrency and Threads

POSIX Threads (pthreads)

❖ The POSIX APIs for dealing with threads
▪ Declared in pthread.h

• Not part of the C/C++ language (cf., Java)

▪ To enable support for multithreading, must include -pthread
flag when compiling and linking with gcc command

• gcc –g –Wall –std=c17 –pthread –o main main.c

7

CSE333, Winter 2023L23: Concurrency and Threads

Creating and Terminating Threads

❖

▪ Creates a new thread into *thread, with attributes *attr
(NULL means default attributes)

▪ Returns 0 on success and an error number on error (can check
against error constants)

▪ The new thread runs start_routine(arg)

❖

▪ Equivalent of exit(retval); for a thread instead of a process

▪ The thread will automatically exit once it returns from
start_routine()

8

int pthread_create(

pthread_t* thread,

const pthread_attr_t* attr,

void* (*start_routine)(void*),

void* arg);

void pthread_exit(void* retval);

CSE333, Winter 2023L23: Concurrency and Threads

What To Do After Forking Threads?

❖

▪ Waits for the thread specified by thread to terminate

▪ The thread equivalent of waitpid()

▪ The exit status of the terminated thread is placed in **retval

❖

▪ Mark thread specified by thread as detached – it will clean up
its resources as soon as it terminates

9

int pthread_detach(pthread_t thread);

int pthread_join(pthread_t thread, void** retval);

CSE333, Winter 2023L23: Concurrency and Threads

Concurrent Server with Threads

❖ A single process handles all of the connections, but a
parent thread dispatches (creates) a new thread to handle
each connection

▪ The child thread handles the new connection and then exits when
the connection terminates

❖ See searchserver_threads/ for code if curious

10

CSE333, Winter 2023L23: Concurrency and Threads

Multithreaded Server

11

client

server

accept()

CSE333, Winter 2023L23: Concurrency and Threads

Multithreaded Server

12

client

server

pthread_create()

pthread_detach()

CSE333, Winter 2023L23: Concurrency and Threads

Multithreaded Server

13

client

server

accept()

client

CSE333, Winter 2023L23: Concurrency and Threads

Multithreaded Server

14

client

client

server

pthread_create()

CSE333, Winter 2023L23: Concurrency and Threads

Multithreaded Server

15

client

client

client

client

client

client
server

shared
data

structures

CSE333, Winter 2023L23: Concurrency and Threads

Thread Examples

❖ See cthreads.c

▪ How do you properly handle memory management?

• Who allocates and deallocates memory?

• How long do you want memory to stick around?

❖ See pthreads.cc

▪ More instructions per thread = higher likelihood of interleaving

❖ See searchserver_threads/searchserver.cc

▪ When calling pthread_create(), start_routine points
to a function that takes only one argument (a void*)

• To pass complex arguments into the thread, create a struct to bundle
the necessary data

16

CSE333, Winter 2023L23: Concurrency and Threads

Why Concurrent Threads? (Review)

❖ Advantages:

▪ Almost as simple to code as sequential

• In fact, most of the code is identical! (but a bit more complicated to
dispatch a thread)

▪ Concurrent execution with good CPU and network utilization

• Some overhead, but less than processes

▪ Shared-memory communication is possible

❖ Disadvantages:

▪ Synchronization is complicated

▪ Shared fate within a process

• One “rogue” thread can hurt you badly

17

CSE333, Winter 2023L23: Concurrency and Threads

Data Races

❖ Two memory accesses form a data race if different
threads access the same location, and at least one is a
write, and they occur one after another

▪ Means that the result of a program can vary depending on chance
(which thread ran first?)

18

CSE333, Winter 2023L23: Concurrency and Threads

Data Race Example

❖ If your fridge has no milk,
then go out and buy some more

▪ What could go wrong?

❖ If you live alone:

❖ If you live with a roommate:

19

if (!milk) {

buy milk

}

! !

CSE333, Winter 2023L23: Concurrency and Threads

20

pollev.com/cse333

Does leaving a note on the fridge
fix our milk data race problem?

A. Yes, problem fixed

B. No, could end up with no milk

C. No, could still buy multiple milk

D. We’re lost…

if (!note) {

if (!milk) {

leave note

buy milk

remove note

}

}

CSE333, Winter 2023L23: Concurrency and Threads

Threads and Data Races

❖ Data races might interfere in painful, non-obvious ways,
depending on the specifics of the data structure

❖ Example: two threads try to read from and write to the
same shared memory location

▪ Could get “correct” answer

▪ Could accidentally read old or intermediate (i.e., invalid) value

▪ One thread’s work could get “lost”

❖ Example: two threads try to push an item onto the head
of the linked list at the same time

▪ Could get “correct” answer

▪ Could get different ordering of items

▪ Could break the data structure!
21

CSE333, Winter 2023L23: Concurrency and Threads

Synchronization

❖ Synchronization is the act of preventing two (or more)
concurrently running threads from interfering with each
other when operating on shared data

▪ Need some mechanism to coordinate the threads

• “Let me go first, then you can go”

▪ Many different coordination mechanisms have been invented
(see CSE 451)

❖ Goals of synchronization:

▪ Liveness – ability to execute in a timely manner
(informally, “something good happens”)

▪ Safety – avoid unintended interactions with shared data
structures (informally, “nothing bad happens”)

22

CSE333, Winter 2023L23: Concurrency and Threads

Lock Synchronization

❖ Use a “Lock” to grant access to a critical section so that
only one thread can operate there at a time

▪ Executed in an uninterruptible (i.e., atomic) manner

❖ Lock Acquire

▪ Wait until the lock is free,
then take it

❖ Lock Release

▪ Release the lock

▪ If other threads are waiting, wake exactly one up to pass lock to

23

// non-critical code

lock.acquire();

// critical section

lock.release();

// non-critical code

loop/idle
if locked

❖ Pseudocode:

CSE333, Winter 2023L23: Concurrency and Threads

Milk Example – What is the Critical Section?

❖ What if we use a lock on the
refrigerator?

▪ Probably overkill – what if
roommate wanted to get eggs?

❖ For performance reasons, only
put what is necessary in the
critical section

▪ Only lock the milk

▪ But lock all steps that must run
uninterrupted (i.e., must run
as an atomic unit)

24

fridge.lock()

if (!milk) {

buy milk

}

fridge.unlock()

milk_lock.lock()

if (!milk) {

buy milk

}

milk_lock.unlock()

CSE333, Winter 2023L23: Concurrency and Threads

pthreads and Locks

❖ Another term for a lock is a mutex (“mutual exclusion”)
▪ pthread.h defines datatype pthread_mutex_t

❖ pthread_mutex_init()

▪ Initializes a mutex with specified attributes

❖ pthread_mutex_lock()

▪ Acquire the lock – blocks if already locked

❖ pthread_mutex_unlock()

▪ Releases the lock

❖

▪ “Uninitializes” a mutex – clean up when done

25

int pthread_mutex_unlock(pthread_mutex_t* mutex);

int pthread_mutex_lock(pthread_mutex_t* mutex);

int pthread_mutex_init(pthread_mutex_t* mutex,

const pthread_mutexattr_t* attr);

int pthread_mutex_destroy(pthread_mutex_t* mutex);

CSE333, Winter 2023L23: Concurrency and Threads

pthread Mutex Examples

❖ See total.cc

▪ Data race between threads

❖ See total_locking.cc

▪ Adding a mutex fixes our data race

❖ How does this compare to sequential code?

▪ Likely slower – only 1 thread can increment at a time, but have to
deal with checking the lock and switching between threads

▪ One possible fix: each thread increments a local variable and then
adds its value (once!) to the shared variable at the end

26

CSE333, Winter 2023L23: Concurrency and Threads

Your Turn! (pthread mutex)

❖ Rewrite thread_main from total_locking.cc:

▪ It need to be passed an int* with the address of sum_total
and an int with the number of times to loop (in that order)

▪ Increment a local sum variable NUM times, then add it to
sum_total

▪ Handle synchronization properly!

27

CSE333, Winter 2023L23: Concurrency and Threads

C++11 Threads

❖ C++11 added threads and concurrency to its libraries
▪ <thread> – thread objects

▪ <mutex> – locks to handle critical sections

▪ <condition_variable> – used to block objects until
notified to resume

▪ <atomic> – indivisible, atomic operations

▪ <future> – asynchronous access to data

▪ These might be built on top of <pthread.h>, but also might
not be

❖ Definitely use in C++11 code if local conventions allow,
but pthreads will be around for a long, long time

▪ Use pthreads in current exercise
28

