
CSE333, Winter 2023L22: Intro to Concurrency

1

pollev.com/cse333

About how long did Exercise 10 take you?

A. [0, 2) hours
B. [2, 4) hours
C. [4, 6) hours
D. [6, 8) hours
E. 8+ Hours
F. I didn’t submit / I prefer not to say

CSE333, Winter 2023L22: Intro to Concurrency

Introduction to Concurrency
CSE 333 Winter 2023

Instructor: Justin Hsia

Teaching Assistants:

Adina Tung Danny Agustinus Edward Zhang

James Froelich Lahari Nidadavolu Mitchell Levy

Noa Ferman Patrick Ho Paul Han

Saket Gollapudi Sara Deutscher Tim Mandzyuk

Timmy Yang Wei Wu Yiqing Wang

Zhuochun Liu

CSE333, Winter 2023L22: Intro to Concurrency

Relevant Course Information

❖ Homework 4 due 1 week from tomorrow (3/9)

▪ Partner form due end of tomorrow

▪ You can still use two late days (until Sunday, 3/12)

❖ Exercise 11 due Friday

❖ Exercise 12 (the last exercise™) to be released Friday

▪ Consumer-producer concurrency

▪ Due Wednesday 3/8 @ 11 am

❖ Final Exam (Monday, 3/13 – Wednesday, 3/15)

▪ Same policies as the midterm

▪ ex8-ex12, hw3-hw4, overall course questions

3

CSE333, Winter 2023L22: Intro to Concurrency

Some Common HW4 Bugs

❖ Your server works, but is really, really slow
▪ Check the 2nd argument to the QueryProcessor constructor

❖ Funny things happen after the first request
▪ Make sure you’re not destroying the HTTPConnection object

too early (e.g., falling out of scope in a while loop)

❖ Server crashes on a blank request
▪ Make sure that you handle the case that read() (or
WrappedRead()) returns 0

4

CSE333, Winter 2023L22: Intro to Concurrency

Lecture Outline

❖ From Query Processing to a Search Server

❖ Concurrency and Concurrency Methods

5

CSE333, Winter 2023L22: Intro to Concurrency

Building a Web Search Engine

❖ We have:

▪ Some indexes

• A map from <word> to <list of documents containing the word>

• This is probably sharded over multiple files

▪ A query processor

• Accepts a query composed of multiple words

• Looks up each word in the index

• Merges the result from each word into an overall result set

6

CSE333, Winter 2023L22: Intro to Concurrency

Search Engine Architecture

7

query
processor

client
index

file

index
file

index
file

CSE333, Winter 2023L22: Intro to Concurrency

Sequential Search Engine (Pseudocode)

8

doclist Lookup(string word) {

bucket = hash(word);

hitlist = file.read(bucket);

foreach hit in hitlist {

doclist.append(file.read(hit));

}

return doclist;

}

main() {

SetupServerToReceiveConnections();

while (1) {

string query_words[] = GetNextQuery();

results = Lookup(query_words[0]);

foreach word in query[1..n] {

results = results.intersect(Lookup(word));

}

Display(results);

}

}

See searchserver_sequential/

CSE333, Winter 2023L22: Intro to Concurrency

Why Sequential?

❖ Advantages:

▪ Super(?) simple to build/write

❖ Disadvantages:

▪ Incredibly poor performance

• One slow client will cause all others to block

• Poor utilization of resources (CPU, network, disk)

9

CSE333, Winter 2023L22: Intro to Concurrency

Execution Timeline: a Multi-Word Query

10

n
e
t
w
o
r
k

I
/
O

m
a
i
n
(
)

G
e
t
N
e
x
t
Q
u
e
r
y
(
)

d
i
s
k

I
/
O

L
o
o
k
u
p
(
)

d
i
s
k

I
/
O

L
o
o
k
u
p
(
)

d
i
s
k

I
/
O

L
o
o
k
u
p
(
)

n
e
t
w
o
r
k

I
/
O

D
i
s
p
l
a
y
(
)

G
e
t
N
e
x
t
Q
u
e
r
y
(
)

• • •

time

query

C
P
U

C
P
U

r
e
s
u
l
t
s
.
i
n
t
e
r
s
e
c
t
(
)

r
e
s
u
l
t
s
.
i
n
t
e
r
s
e
c
t
(
)

CSE333, Winter 2023L22: Intro to Concurrency

What About I/O-caused Latency?

❖ Jeff Dean’s “Numbers Everyone Should Know” (LADIS ‘09)

11

CSE333, Winter 2023L22: Intro to Concurrency

Execution Timeline: (Loosely) To Scale

12

n
e
t
w
o
r
k

I
/
O

m
a
i
n
(
)

d
i
s
k

I
/
O

d
i
s
k

I
/
O

d
i
s
k

I
/
O

• • •

time

query

n
e
t
w
o
r
k

I
/
O

C
P
U

C
P
U

CSE333, Winter 2023L22: Intro to Concurrency

Multiple (Single-Word) Queries

13

C
P
U

1
.
a

I
/
O

1
.
b

C
P
U

1
.
c

I
/
O

1
.
d

C
P
U

1
.
e

C
P
U

2
.
a

I
/
O

2
.
b

C
P
U

2
.
c

I
/
O

2
.
d

C
P
U

2
.
e

C
P
U

3
.
a

I
/
O

3
.
b

C
P
U

3
.
c

I
/
O

3
.
d

C
P
U

3
.
e

time

query 2

query 3

query 1

is the Query Number
#.a -> GetNextQuery()
#.b -> network I/O
#.c -> Lookup() & file.read()
#.d -> Disk I/O
#.e -> Intersect()

& Display()

CSE333, Winter 2023L22: Intro to Concurrency

Multiple Queries: (Loosely) To Scale

14

I
/
O

1
.
b

I
/
O

1
.
d

time

query 2

query 1

I
/
O

1
.
b

I
/
O

1
.
d

I
/
O

1
.
b

I
/
O

1
.
d

query 3

CSE333, Winter 2023L22: Intro to Concurrency

Sequential Issues

15

C
P
U

1
.
a

I
/
O

1
.
b

C
P
U

1
.
c

I
/
O

1
.
d

C
P
U

1
.
e

C
P
U

2
.
a

I
/
O

2
.
b

C
P
U

2
.
c

I
/
O

2
.
d

C
P
U

2
.
e

C
P
U

3
.
a

I
/
O

3
.
b

C
P
U

3
.
c

I
/
O

3
.
d

C
P
U

3
.
e

time

query 2

query 3

query 1

The CPU is idle most
of the time!

(picture not to scale)

Only one I/O request at
a time is “in flight”

Queries don’t run until
earlier queries finish

CSE333, Winter 2023L22: Intro to Concurrency

Sequential Can Be Inefficient

❖ Only one query is being processed at a time

▪ All other queries queue up behind the first one

▪ And clients queue up behind the queries …

❖ Even while processing one query, the CPU is idle the vast
majority of the time

▪ It is blocked waiting for I/O to complete

• Disk I/O can be very, very slow (10 million times slower …)

❖ At most one I/O operation is in flight at a time

▪ Missed opportunities to speed I/O up

• Separate devices in parallel, better scheduling of a single device, etc.

16

CSE333, Winter 2023L22: Intro to Concurrency

Lecture Outline

❖ From Query Processing to a Search Server

❖ Concurrency and Concurrency Methods

17

CSE333, Winter 2023L22: Intro to Concurrency

Concurrency

❖ Concurrency != parallelism

▪ Concurrency is working on multiple tasks with overlapping
execution times

▪ Parallelism is executing multiple CPU instructions simultaneously

❖ Our search engine could run concurrently in multiple
different ways:

▪ Example: Issue I/O requests against different files/disks
simultaneously

• Could read from several index files at once, processing the I/O results
as they arrive

▪ Example: Execute multiple queries at the same time

• While one is waiting for I/O, another can be executing on the CPU

18

CSE333, Winter 2023L22: Intro to Concurrency

A Concurrent Implementation

❖ Use multiple “workers”

▪ As a query arrives, create a new worker to handle it

• The worker reads the query from the network, issues read requests
against files, assembles results and writes to the network

• The worker alternates between consuming CPU cycles and blocking
on I/O

▪ The OS context switches between workers

• While one is blocked on I/O, another can use the CPU

• Multiple workers’ I/O requests can be issued at once

❖ So what should we use for our “workers”?

19

CSE333, Winter 2023L22: Intro to Concurrency

Worker Option 1: Processes (Review)

❖ Processes can fork “cloned” processes that have a
parent-child relationship

▪ Work almost entirely independent of each other

❖ The major components of a process are:

▪ An address space to hold data and instructions

▪ Open resources such as file descriptors

▪ Current state of execution

• Includes values of registers (including program counter and stack
pointer) and parts of memory (the Stack, in particular)

20

CSE333, Winter 2023L22: Intro to Concurrency

Why Processes?

❖ Advantages:

▪ Processes are isolated from one another

• No shared memory between processes

• If one crashes, the other processes keep going

▪ No need for language support (OS provides fork)

❖ Disadvantages:

▪ A lot of overhead during creation and context switching

▪ Cannot easily share memory between processes – typically must
communicate through the file system

21

CSE333, Winter 2023L22: Intro to Concurrency

Worker Option 2: Threads

❖ From within a process, we can separate out the concept
of a “thread of execution” (thread for short)

▪ Processes are the containers that hold shared resources and
attributes

• e.g., address space, file descriptors, security attributes

▪ Threads are independent, sequential execution streams (units of
scheduling) within a process

• e.g., stack, stack pointer, program counter, registers

22

thread

CSE333, Winter 2023L22: Intro to Concurrency

Threads vs. Processes

23

OS kernel [protected]

Stackchild

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

fork()

SPparent

PCparent

SPchild

PCchild

CSE333, Winter 2023L22: Intro to Concurrency

Threads vs. Processes

24

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

pthread_create()

Stackchild

SPparent

PCparent

SPchild

PCchild

SPparent

PCparent

CSE333, Winter 2023L22: Intro to Concurrency

Multi-threaded Search Engine (Pseudocode)

25

doclist Lookup(string word) {

bucket = hash(word);

hitlist = file.read(bucket);

foreach hit in hitlist

doclist.append(file.read(hit));

return doclist;

}

ProcessQuery(string query_words[]) {

results = Lookup(query_words[0]);

foreach word in query[1..n]

results = results.intersect(Lookup(word));

Display(results);

}

main() {

while (1) {

string query_words[] = GetNextQuery();

CreateThread(ProcessQuery(query_words));

}

}

All we did was put the

code into a function,

and create a thread

that invokes it!

CSE333, Winter 2023L22: Intro to Concurrency

Multi-threaded Search Engine (Execution)

26

C
P
U

1
.
a

I
/
O

1
.
b

C
P
U

1
.
c

I
/
O

1
.
d

C
P
U

1
.
e

C
P
U

2
.
a

I
/
O

2
.
b

C
P
U

3
.
a

I
/
O

3
.
b

C
P
U

3
.
c

I
/
O

3
.
d

C
P
U

3
.
e

time

query 2

query 3

query 1

C
P
U

2
.
c

I
/
O

2
.
d

C
P
U

2
.
e

Note how only one

thread uses any

specific resource at a

time.

The OS schedules all

of this for us! ☺

CSE333, Winter 2023L22: Intro to Concurrency

Why Threads?

❖ Advantages:

▪ You (mostly) write sequential-looking code

▪ Less overhead than processes during creation and context
switching

▪ Threads can run in parallel if you have multiple CPUs/cores

❖ Disadvantages:

▪ If threads share data, you need locks or other synchronization

• Very bug-prone and difficult to debug

▪ Threads can introduce overhead

• Lock contention, context switch overhead, and other issues

▪ Need language support for threads

27

CSE333, Winter 2023L22: Intro to Concurrency

Alternate: Non-blocking I/O

❖ Reading from the network can truly block your program

▪ Remote computer may wait arbitrarily long before sending data

❖ Non-blocking I/O (network, console)

▪ Your program enables non-blocking I/O on its file descriptors

▪ Your program issues read() and write() system calls

• If the read/write would block, the system call returns immediately

▪ Program can ask the OS which file descriptors are
readable/writeable

• Program can choose to block while no file descriptors are ready

28

CSE333, Winter 2023L22: Intro to Concurrency

Alternate: Asynchronous I/O

❖ Using asynchronous I/O, your program (almost never)
blocks on I/O

❖ Your program begins processing a query

▪ When your program needs to read data to make further progress,
it registers interest in the data with the OS and then switches to a
different query

▪ The OS handles the details of issuing the read on the disk, or
waiting for data from the console (or other devices, like the
network)

▪ When data becomes available, the OS lets your program know by
delivering an event

29

CSE333, Winter 2023L22: Intro to Concurrency

Event-Driven Programming

❖ Your program is structured as an event-loop

30

void dispatch(task, event) {

switch (task.state) {

case READING_FROM_CONSOLE:

query_words = event.data;

async_read(index, query_words[0]);

task.state = READING_FROM_INDEX;

return;

case READING_FROM_INDEX:

...

}

}

while (1) {

event = OS.GetNextEvent();

task = lookup(event);

dispatch(task, event);

}

CSE333, Winter 2023L22: Intro to Concurrency

Asynchronous, Event-Driven

31

I
/
O

1
.
b

I
/
O

2
.
b

I
/
O

3
.
b

time

I
/
O

2
.
d

C
P
U

3
.
a

C
P
U

1
.
a

C
P
U

2
.
a

I
/
O

1
.
d

C
P
U

1
.
c

C
P
U

2
.
c

I
/
O

3
.
d

C
P
U

1
.
e

C
P
U

2
.
e

C
P
U

3
.
c

C
P
U

3
.
e

is the Query Number
#.a -> GetNextQuery()
#.b -> network I/O
#.c -> Lookup() & file.read()
#.d -> Disk I/O
#.e -> Intersect()

& Display()

CSE333, Winter 2023L22: Intro to Concurrency

Why Events?

❖ Advantages:

▪ Don’t have to worry about locks and race conditions

▪ For some kinds of programs, especially GUIs, leads to a very
simple and intuitive program structure

• One event handler for each UI event

❖ Disadvantages:

▪ Can lead to very complex structure for programs that do lots of
disk and network I/O

• Sequential code gets broken up into a jumble of small event handlers

• You have to package up all task state between handlers

32

CSE333, Winter 2023L22: Intro to Concurrency

Outline (next two lectures)

❖ We’ll look at different searchserver implementations

▪ Concurrent via dispatching threads – pthread_create()

▪ Concurrent via forking processes – fork()

❖ Reference: Computer Systems: A Programmer’s
Perspective, Chapter 12 (CSE 351 book)

33

