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A. [0, 2) hours
B. [2, 4) hours
C. [4, 6) hours
D. [6, 8) hours
E. 8+ Hours
F. I didn’t submit / I prefer not to say
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Relevant Course Information

❖ Homework 4 due 1 week from tomorrow (3/9)

▪ Partner form due end of tomorrow

▪ You can still use two late days (until Sunday, 3/12)

❖ Exercise 11 due Friday

❖ Exercise 12 (the last exercise™) to be released Friday

▪ Consumer-producer concurrency

▪ Due Wednesday 3/8 @ 11 am

❖ Final Exam (Monday, 3/13 – Wednesday, 3/15)

▪ Same policies as the midterm

▪ ex8-ex12, hw3-hw4, overall course questions
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Some Common HW4 Bugs

❖ Your server works, but is really, really slow
▪ Check the 2nd argument to the QueryProcessor constructor

❖ Funny things happen after the first request
▪ Make sure you’re not destroying the HTTPConnection object 

too early (e.g., falling out of scope in a while loop)

❖ Server crashes on a blank request
▪ Make sure that you handle the case that read() (or 
WrappedRead()) returns 0
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Lecture Outline

❖ From Query Processing to a Search Server

❖ Concurrency and Concurrency Methods
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Building a Web Search Engine

❖ We have:

▪ Some indexes

• A map from <word> to <list of documents containing the word>

• This is probably sharded over multiple files

▪ A query processor

• Accepts a query composed of multiple words

• Looks up each word in the index

• Merges the result from each word into an overall result set
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Search Engine Architecture
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Sequential Search Engine (Pseudocode)

8

doclist Lookup(string word) {

bucket = hash(word);

hitlist = file.read(bucket);

foreach hit in hitlist {

doclist.append(file.read(hit));

}

return doclist;

}

main() {

SetupServerToReceiveConnections();

while (1) {

string query_words[] = GetNextQuery();

results = Lookup(query_words[0]);

foreach word in query[1..n] {

results = results.intersect(Lookup(word));

}

Display(results);

}

}

See searchserver_sequential/
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Why Sequential?

❖ Advantages:

▪ Super(?) simple to build/write

❖ Disadvantages:

▪ Incredibly poor performance

• One slow client will cause all others to block

• Poor utilization of resources (CPU, network, disk)
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Execution Timeline: a Multi-Word Query
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What About I/O-caused Latency?

❖ Jeff Dean’s “Numbers Everyone Should Know” (LADIS ‘09)
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Execution Timeline: (Loosely) To Scale
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Multiple (Single-Word) Queries
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Multiple Queries: (Loosely) To Scale
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Sequential Issues
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Sequential Can Be Inefficient

❖ Only one query is being processed at a time

▪ All other queries queue up behind the first one

▪ And clients queue up behind the queries …

❖ Even while processing one query, the CPU is idle the vast 
majority of the time

▪ It is blocked waiting for I/O to complete

• Disk I/O can be very, very slow (10 million times slower …)

❖ At most one I/O operation is in flight at a time

▪ Missed opportunities to speed I/O up

• Separate devices in parallel, better scheduling of a single device, etc.
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Lecture Outline

❖ From Query Processing to a Search Server

❖ Concurrency and Concurrency Methods
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Concurrency

❖ Concurrency != parallelism

▪ Concurrency is working on multiple tasks with overlapping 
execution times

▪ Parallelism is executing multiple CPU instructions simultaneously

❖ Our search engine could run concurrently in multiple 
different ways:

▪ Example: Issue I/O requests against different files/disks 
simultaneously

• Could read from several index files at once, processing the I/O results 
as they arrive

▪ Example: Execute multiple queries at the same time

• While one is waiting for I/O, another can be executing on the CPU
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A Concurrent Implementation 

❖ Use multiple “workers”

▪ As a query arrives, create a new worker to handle it

• The worker reads the query from the network, issues read requests 
against files, assembles results and writes to the network

• The worker alternates between consuming CPU cycles and blocking 
on I/O

▪ The OS context switches between workers

• While one is blocked on I/O, another can use the CPU

• Multiple workers’ I/O requests can be issued at once

❖ So what should we use for our “workers”?

19



CSE333, Winter 2023L22:  Intro to Concurrency

Worker Option 1: Processes (Review)

❖ Processes can fork “cloned” processes that have a 
parent-child relationship

▪ Work almost entirely independent of each other

❖ The major components of a process are:

▪ An address space to hold data and instructions

▪ Open resources such as file descriptors

▪ Current state of execution

• Includes values of registers (including program counter and stack 
pointer) and parts of memory (the Stack, in particular)
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Why Processes?

❖ Advantages:

▪ Processes are isolated from one another

• No shared memory between processes

• If one crashes, the other processes keep going

▪ No need for language support (OS provides fork)

❖ Disadvantages:

▪ A lot of overhead during creation and context switching

▪ Cannot easily share memory between processes – typically must 
communicate through the file system
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Worker Option 2: Threads

❖ From within a process, we can separate out the concept 
of a “thread of execution” (thread for short)

▪ Processes are the containers that hold shared resources and 
attributes

• e.g., address space, file descriptors, security attributes

▪ Threads are independent, sequential execution streams (units of 
scheduling) within a process

• e.g., stack, stack pointer, program counter, registers

22
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Threads vs. Processes
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Threads vs. Processes
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Multi-threaded Search Engine (Pseudocode)
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doclist Lookup(string word) {

bucket = hash(word);

hitlist = file.read(bucket);

foreach hit in hitlist

doclist.append(file.read(hit));

return doclist;

}

ProcessQuery(string query_words[]) {

results = Lookup(query_words[0]);

foreach word in query[1..n]

results = results.intersect(Lookup(word));

Display(results);

}

main() {

while (1) {

string query_words[] = GetNextQuery();

CreateThread(ProcessQuery(query_words));

}

}

All we did was put the 

code into a function,

and create a thread 

that invokes it!
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Multi-threaded Search Engine (Execution)
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Why Threads?

❖ Advantages:

▪ You (mostly) write sequential-looking code

▪ Less overhead than processes during creation and context 
switching

▪ Threads can run in parallel if you have multiple CPUs/cores

❖ Disadvantages:

▪ If threads share data, you need locks or other synchronization

• Very bug-prone and difficult to debug

▪ Threads can introduce overhead

• Lock contention, context switch overhead, and other issues

▪ Need language support for threads
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Alternate: Non-blocking I/O

❖ Reading from the network can truly block your program

▪ Remote computer may wait arbitrarily long before sending data

❖ Non-blocking I/O (network, console)

▪ Your program enables non-blocking I/O on its file descriptors

▪ Your program issues read() and write() system calls

• If the read/write would block, the system call returns immediately

▪ Program can ask the OS which file descriptors are 
readable/writeable

• Program can choose to block while no file descriptors are ready
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Alternate: Asynchronous I/O

❖ Using asynchronous I/O, your program (almost never) 
blocks on I/O

❖ Your program begins processing a query

▪ When your program needs to read data to make further progress, 
it registers interest in the data with the OS and then switches to a 
different query

▪ The OS handles the details of issuing the read on the disk, or 
waiting for data from the console (or other devices, like the 
network)

▪ When data becomes available, the OS lets your program know by 
delivering an event
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Event-Driven Programming

❖ Your program is structured as an event-loop

30

void dispatch(task, event) {

switch (task.state) {

case READING_FROM_CONSOLE:

query_words = event.data;

async_read(index, query_words[0]);

task.state = READING_FROM_INDEX;

return;

case READING_FROM_INDEX:

...

}

}

while (1) {

event = OS.GetNextEvent();

task = lookup(event);

dispatch(task, event);

}
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Asynchronous, Event-Driven
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Why Events?

❖ Advantages:

▪ Don’t have to worry about locks and race conditions

▪ For some kinds of programs, especially GUIs, leads to a very 
simple and intuitive program structure

• One event handler for each UI event

❖ Disadvantages:

▪ Can lead to very complex structure for programs that do lots of 
disk and network I/O

• Sequential code gets broken up into a jumble of small event handlers

• You have to package up all task state between handlers
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Outline (next two lectures)

❖ We’ll look at different searchserver implementations

▪ Concurrent via dispatching threads – pthread_create()

▪ Concurrent via forking processes – fork()

❖ Reference:  Computer Systems: A Programmer’s 
Perspective, Chapter 12 (CSE 351 book)
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