
CSE333, Winter 2023L11: C++ Class Details, Heap

1

pollev.com/cse333

Where are you so far on Homework 2?

A. Haven’t started yet
B. Working on Part A (File Parser)
C. Working on Part B (File Crawler and Indexer)
D. Working on Part C (Query Processor)
E. Done!
F. Prefer not to say

CSE333, Winter 2023L11: C++ Class Details, Heap

C++ Class Details, Heap
CSE 333 Winter 2023

Instructor: Justin Hsia

Teaching Assistants:

Adina Tung Danny Agustinus Edward Zhang

James Froelich Lahari Nidadavolu Mitchell Levy

Noa Ferman Patrick Ho Paul Han

Saket Gollapudi Sara Deutscher Tim Mandzyuk

Timmy Yang Wei Wu Yiqing Wang

Zhuochun Liu

CSE333, Winter 2023L11: C++ Class Details, Heap

Relevant Course Information

❖ Exercise 6 due Wednesday

❖ Exercise 7 out Wednesday

▪ Will build on Exercise 6 and use what a lot of is discussed today

❖ Homework 2 due Thursday (2/2)

▪ File system crawler, indexer, and search engine

▪ Don’t forget to clone your repo to double-/triple-/quadruple-
check compilation!

▪ Don’t modify the header files!

❖ Midterm: February 9 - 11

▪ Take home (Gradescope) and open notes

▪ Will involve reflecting on previous assignments

▪ Individual, but high-level discussion allowed (“Gilligan’s Island Rule”)

3

CSE333, Winter 2023L11: C++ Class Details, Heap

Lecture Outline

❖ Class Details

▪ Filling in some gaps from last time

❖ Using the Heap
▪ new / delete / delete[]

4

CSE333, Winter 2023L11: C++ Class Details, Heap

Rule of Three

❖ If you define any of:

1) Destructor

2) Copy Constructor

3) Assignment (operator=)

❖ Then you should normally define all three

▪ Can explicitly ask for default synthesized versions (C++11):

5

class Point {

public:

Point() = default; // the default ctor

~Point() = default; // the default dtor

Point(const Point& copyme) = default; // the default cctor

Point& operator=(const Point& rhs) = default; // the default "="

...

CSE333, Winter 2023L11: C++ Class Details, Heap

Dealing with the Insanity (C++11)

❖ C++ style guide tip:

▪ Disabling the copy constructor and assignment operator can avoid
confusion from implicit invocation and excessive copying

6

class Point {

public:

Point(const int x, const int y) : x_(x), y_(y) { } // ctor

...

Point(const Point& copyme) = delete; // declare cctor and "=" as

Point& operator=(const Point& rhs) = delete; // as deleted (C++11)

private:

...

}; // class Point

Point w; // compiler error (no default constructor)

Point x(1, 2); // OK!

Point y = w; // compiler error (no copy constructor)

y = x; // compiler error (no assignment operator)

Point_2011.h

CSE333, Winter 2023L11: C++ Class Details, Heap

Access Control

❖ Access modifiers for members:
▪ public: accessible to all parts of the program

▪ private: accessible to the member functions of the class

• Private to class, not object instances

▪ protected: accessible to member functions of the class and
any derived classes (subclasses – more to come, later)

❖ Reminders:

▪ Access modifiers apply to all members that follow until another
access modifier is reached

▪ If no access modifier is specified, struct members default to
public and class members default to private

7

CSE333, Winter 2023L11: C++ Class Details, Heap

Nonmember Functions

❖ “Nonmember functions” are just normal functions that
happen to use some class

▪ Called like a regular function instead of as a member of a class
object instance

• This gets a little weird when we talk about operators…

▪ These do not have access to the class’ private members

❖ Useful nonmember functions often included as part of
interface to a class

▪ Declaration goes in header file, but outside of class definition

8

CSE333, Winter 2023L11: C++ Class Details, Heap

friend Nonmember Functions

❖ A class can give a nonmember function (or class) access to
its non-public members by declaring it as a friend
within its definition

▪ Not a class member, but has access privileges as if it were

▪ friend functions are usually unnecessary if your class includes
appropriate “getter” public functions

9

class Complex {

...

friend std::istream& operator>>(std::istream& in, Complex& a);

...

}; // class Complex

std::istream& operator>>(std::istream& in, Complex& a) {

...

}

Complex.h

Complex.cc

CSE333, Winter 2023L11: C++ Class Details, Heap

When to use Nonmember and friend

❖ Member functions:

▪ Operators that modify the object being called on

• Assignment operator (operator=)

▪ “Core” non-operator functionality that is part of the class
interface

❖ Nonmember functions:

▪ Used for commutative operators

• e.g., so v1 + v2 is invoked as operator+(v1, v2)instead of
v1.operator+(v2)

▪ If operating on two types and the class is on the right-hand side

• e.g., cin >> complex;

▪ Returning a “new” object, not modifying an existing one

▪ Only grant friend permission if you NEED to

10

There is more to C++ object design that we don’t

have time to get to; these are good rules of thumb,

but be sure to think about your class carefully!

STYLE
TIP

CSE333, Winter 2023L11: C++ Class Details, Heap

11

pollev.com/cse333

If we wanted to overload operator== to
compare two Point objects, what type
of function should it be?
❖ Reminder that Point has getters and a setter

A. non-friend + member

B. friend + member

C. non-friend + non-member

D. friend + non-member

E. I’m lost…

CSE333, Winter 2023L11: C++ Class Details, Heap

Namespaces

❖ Each namespace is a separate scope

▪ Useful for avoiding symbol collisions!

❖ Namespace definition:
▪ namespace name {

// declarations go here

}

▪ Doesn’t end with a semi-colon and doesn’t add to the indentation
of its contents

▪ Creates a new namespace name if it did not exist, otherwise adds
to the existing namespace (!)

• This means that components (e.g., classes, functions) of a namespace
can be defined in multiple source files

12

namespace name {

// declarations go here

} // namespace name

ll::Iterator

ht::Iterator

Same name, but

different

namespace

Namespace doesn’t add

indentation to contents

Comment to remind that this

is end of namespace

lowercase

CSE333, Winter 2023L11: C++ Class Details, Heap

Classes vs. Namespaces

❖ They seems somewhat similar, but classes are not
namespaces:

▪ There are no instances/objects of a namespace; a namespace is
just a group of logically-related things (classes, functions, etc.)

▪ To access a member of a namespace, you must use the fully
qualified name (i.e., nsp_name::member)

• Unless you are using that namespace

• You only used the fully qualified name of a class member when you
are defining it outside of the scope of the class definition

13

CSE333, Winter 2023L11: C++ Class Details, Heap

Complex Example Walkthrough

See:
Complex.h

Complex.cc

testcomplex.cc

14

CSE333, Winter 2023L11: C++ Class Details, Heap

Lecture Outline

❖ Class Details

▪ Filling in some gaps from last time

❖ Using the Heap
▪ new / delete / delete[]

15

CSE333, Winter 2023L11: C++ Class Details, Heap

C++11 nullptr

❖ C and C++ have long used NULL as a pointer value that
references nothing

❖ C++11 introduced a new literal for this: nullptr

▪ New reserved word

▪ Interchangeable with NULL for all practical purposes, but it has
type T* for any/every T, and is not an integer value

• Avoids funny edge cases (see C++ references for details)

• Still can convert to/from integer 0 for tests, assignment, etc.

▪ Advice: prefer nullptr in C++11 code

• Though NULL will also be around for a long, long time

16

STYLE
TIP

CSE333, Winter 2023L11: C++ Class Details, Heap

new/delete

❖ To allocate on the heap using C++, you use the new
keyword instead of malloc() from stdlib.h

▪ You can use new to allocate an object (e.g., new Point)

▪ You can use new to allocate a primitive type (e.g., new int)

❖ To deallocate a heap-allocated object or primitive, use the
delete keyword instead of free() from stdlib.h

▪ Don’t mix and match!

• Never free() something allocated with new

• Never delete something allocated with malloc()

• Careful if you’re using a legacy C code library or module in C++

17

CSE333, Winter 2023L11: C++ Class Details, Heap

new/delete Behavior

❖ new behavior:

▪ When allocating you can specify a constructor or initial value

• e.g., new Point(1, 2), new int(333)

▪ If no initialization specified, it will use default constructor for
objects and uninitialized (“mystery”) data for primitives

▪ You don’t need to check that new returns nullptr

• When an error is encountered, an exception is thrown (that we won’t
worry about)

❖ delete behavior:

▪ If you delete already deleted memory, then you will get
undefined behavior (same as when you double free in C)

18

CSE333, Winter 2023L11: C++ Class Details, Heap

new/delete Example

19

#include "Point.h"

... // definitions of AllocateInt() and AllocatePoint()

int main() {

Point* x = AllocatePoint(1, 2);

int* y = AllocateInt(3);

cout << "x's x_ coord: " << x->get_x() << endl;

cout << "y: " << y << ", *y: " << *y << endl;

delete x;

delete y;

return EXIT_SUCCESS;

}

int* AllocateInt(int x) {

int* heapy_int = new int;

*heapy_int = x;

return heapy_int;

}

Point* AllocatePoint(int x, int y) {

Point* heapy_pt = new Point(x,y);

return heapy_pt;

}

heappoint.cc

CSE333, Winter 2023L11: C++ Class Details, Heap

Dynamically Allocated Arrays

❖ To dynamically allocate an array:

▪ Default initialize:

❖ To dynamically deallocate an array:

▪ Use delete[] name;

▪ It is an incorrect to use “delete name;” on an array

• The compiler probably won’t catch this, though (!) because it can’t
always tell if name* was allocated with new type[size];

or new type;

– Especially inside a function where a pointer parameter could point to a
single item or an array and there’s no way to tell which!

• Result of wrong delete is undefined behavior

20

type* name = new type[size];

delete[] name;

CSE333, Winter 2023L11: C++ Class Details, Heap

Arrays Example (primitive)

21

#include "Point.h"

int main() {

int stack_int;

int* heap_int = new int;

int* heap_int_init = new int(12);

int stack_arr[3];

int* heap_arr = new int[3];

int* heap_arr_init_val = new int[3]();

int* heap_arr_init_lst = new int[3]{4, 5}; // C++11

...

delete heap_int; //

delete heap_int_init; //

delete heap_arr; //

delete[] heap_arr_init_val; //

return EXIT_SUCCESS;

}

arrays.cc

CSE333, Winter 2023L11: C++ Class Details, Heap

Arrays Example (class objects)

22

#include "Point.h"

int main() {

...

Point stack_pt(1, 2);

Point* heap_pt = new Point(1, 2);

Point* heap_pt_arr_err = new Point[2];

Point* heap_pt_arr_init_lst = new Point[2]{{1, 2}, {3, 4}};

// C++11

...

delete heap_pt;

delete[] heap_pt_arr_init_lst;

return EXIT_SUCCESS;

}

arrays.cc

CSE333, Winter 2023L11: C++ Class Details, Heap

malloc vs. new

malloc() new

What is it? a function an operator or keyword

How often used (in C)? often never

How often used (in C++)? rarely often

Allocated memory for anything
arrays, structs, objects,

primitives

Returns
a void*

(should be cast)
appropriate pointer type

(doesn’t need a cast)

When out of memory returns NULL throws an exception

Deallocating free() delete or delete[]

23

CSE333, Winter 2023L11: C++ Class Details, Heap

▪ If there is an error,
how would you fix it?

A. Bad dereference

B. Bad delete

C. Memory leak

D. “Works” fine

E. We’re lost…

24

pollev.com/cse333

What will happen when we invoke Bar()?

Foo::Foo(int val) { Init(val); }

Foo::~Foo() { delete foo_ptr_; }

void Foo::Init(int val) {

foo_ptr_ = new int;

*foo_ptr_ = val;

}

Foo& Foo::operator=(const Foo& rhs) {

delete foo_ptr_;

Init(*(rhs.foo_ptr_));

return *this;

}

void Bar() {

Foo a(10);

Foo b(20);

a = a;

}

CSE333, Winter 2023L11: C++ Class Details, Heap

Rule of Three, Revisited

❖ Now what will happen when we invoke Bar()?

▪ If there is an error,
how would you fix it?

25

Foo::Foo(int val) { Init(val); }

Foo::~Foo() { delete foo_ptr_; }

void Foo::Init(int val) {

foo_ptr_ = new int;

*foo_ptr_ = val;

}

Foo& Foo::operator=(const Foo& rhs) {

if (&rhs != this) {

delete foo_ptr_;

Init(*(rhs.foo_ptr_));

}

return *this;

}

void Bar() {

Foo a(10);

Foo b = a;

}

CSE333, Winter 2023L11: C++ Class Details, Heap

Extra Exercise #1

❖ Write a C++ function that:
▪ Uses new to dynamically allocate an array of strings and uses
delete[] to free it

▪ Uses new to dynamically allocate an array of pointers to strings

• Assign each entry of the array to a string allocated using new

▪ Cleans up before exiting

• Use delete to delete each allocated string

• Uses delete[] to delete the string pointer array

• (whew!)

26

CSE333, Winter 2023L11: C++ Class Details, Heap

An extra example for practice with class design and heap-
allocated data: a C-string wrapper class classed Str.

27

CSE333, Winter 2023L11: C++ Class Details, Heap

Heap Member (extra example)

❖ Let’s build a class to simulate some of the functionality of
the C++ string

▪ Internal representation: c-string to hold characters

❖ What might we want to implement in the class?

28

CSE333, Winter 2023L11: C++ Class Details, Heap

Str Class

29

#include <iostream>

using namespace std; // should replace this

class Str {

public:

Str(); // default ctor

Str(const char* s); // c-string ctor

Str(const Str& s); // copy ctor

~Str(); // dtor

int length() const; // return length of string

char* c_str() const; // return a copy of st_

void append(const Str& s);

Str& operator=(const Str& s); // string assignment

friend std::ostream& operator<<(std::ostream& out, const Str& s);

private:

char* st_; // c-string on heap (terminated by '\0')

}; // class Str

Str.h

CSE333, Winter 2023L11: C++ Class Details, Heap

Str::append (extra example)

❖ Complete the append() member function:
▪ char* strncpy(char* dst, char* src, size_t num);

▪ char* strncat(char* dst, char* src, size_t num);

30

#include <cstring>

#include "Str.h"

// append contents of s to the end of this string

void Str::append(const Str& s) {

}

