Hypertext Transfer Protocol CSE 333 Spring 2023

Instructor: Chris Thachuk

Teaching Assistants:

Byron JinCJ ReithDeeksha VatwaniEdward ZhangHumza LalaLahari NidadavoluNoa FermanSaket GollapudiSeulchan (Paul) HanTimmy YangTim MandzyukWui Wu

Relevant Course Information

- Midterm grades to be released soon
 - Regrades will be open for 3 days once released
- Exercise 10 due Wednesday (5/24)
 - Client-side programming
- Exercise 11 due Friday (5/26)
 - Server-side programming
 - Can use ex10 client solution to send messages to ex11 server
- Homework 4 due next Thursday (6/01)
 - Can still use 2 late days for hw4 (hard deadline of 6/04)
 - Part of section this week will cover tools for debugging hw4

Homework 4 Summary

- Build a Multithreaded Web Server (333gle)
 - You will host the querying service that you built in your previous homework on a web server
- Running your server
 - ./http333d <port> <static files> <unit indices>
 - Static files are the files on disk corresponding to our index files
 - You (and others) can access it on any browser now!
- Implementation
 - Using network protocols to communicate between client/server
 - Handling some additional security flaws
 - Note: Multithreading is already implemented for you

Client and Server Communication

- Lecture 23 (Client-side and Server-side Networking) has already shown how to do this in C/C++
 - sendreceive.cc and server_accept_rw_close.cc
- This is what actually happens on the web!
 - Clients establish a stable TCP connection to the server
 - Lots of bytes are exchanged/processed between client & server

Case Study of Protocols: HTTP

- A protocol defines a set of rules governing the format and exchange of messages in a computing system
 - Syntax: The formatting or grammar of the system
 - Semantics: What messages are being exchanged
 - Allows everyone be on the same page of communication
- Hypertext Transfer Protocol: Request/Response Protocol
 - HTTP defines how we should send information between a client and a server
 - A **request** will send a message to the server (about anything)
 - A **response** will process and respond to that message
 - And it's human readable!

Requests: Client Sending Messages

- A client wants to talk to a server about something
 - Initiates a conversation (establish or use existing connection)
 - Generally, this is for retrieving a resource, using Uniform Resource Identifier (URI)
- Standard Syntax:
 - METHOD] [request-uri] HTTP/[version]\r\n
 [headerfield1]: [fieldvalue1]\r\n
 [headerfield2]: [fieldvalue2]\r\n
 [...]
 [headerfieldN]: [fieldvalueN]\r\n
 \r\n
 [request body, if any]

- There are three commonly-used HTTP methods:
 - **GET**: "Please send me the named resource"

- There are three commonly-used HTTP methods:
 - GET: "Please send me the named resource"
 - **POST**: "I'd like to submit data to you" (*e.g.* file upload)

- There are three commonly-used HTTP methods:
 - GET: "Please send me the named resource"
 - POST: "I'd like to submit data to you" (e.g. file upload)
 - **HEAD**: "Send me the headers for the named resource"
 - Doesn't send resource; often to check if cached copy is still valid

- There are three commonly-used HTTP methods:
 - GET: "Please send me the named resource"
 - POST: "I'd like to submit data to you" (*e.g.* file upload)
 - HEAD: "Send me the headers for the named resource"
 - Doesn't send resource; often to check if cached copy is still valid
- Other methods exist, but are much less common:
 - PUT, DELETE, TRACE, OPTIONS, CONNECT, PATCH, ...
 - For instance: TRACE "show any proxies or caches in between me and the server"
 - https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods

Client Headers

- The client can provide one or more request "headers"
 - These provide information to the server or modify how the server should process the request
- You'll encounter many in practice
 - Host: the DNS name of the server
 - User-Agent: an identifying string naming the browser
 - Accept: the content types the client prefers or can accept
 - Cookie: an HTTP cookie previously set by the server
 - https://www.rfc-editor.org/rfc/rfc2616.html#section-5.3

A Real Request

```
GET / HTTP/1.1
Host: attu.cs.washington.edu:3333
Connection: keep-alive
Upgrade-Insecure-Requests: 1
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/66.0.3359.181 Safari/537.36
Cookie:
SESS0c8e598bbe17200b27e1d0a18f9a42bb=5c18d7ed6d369d56b69a1
c0aa441d
...
```

Demo: use nc to see a real HTTP request

Response: Server Responding

- A server parses and sends a response to a user
 - Indicate how the server processed the request (accepted or not)
 - Send requested resource back to the client

General form:

```
HTTP/[version] [status code] [reason]\r\n
[headerfield1]: [fieldvalue1]\r\n
[headerfield2]: [fieldvalue2]\r\n
[...]
[headerfieldN]: [fieldvalueN]\r\n
\r\n
[response body, if any]
```

Status Codes and Reason

- Code: numeric outcome of the request easy for computers to interpret
 - A 3-digit integer with the 1st digit indicating a response category
 - 1xx: Informational message
 - 2xx: Success
 - 3xx: Redirect to a different URL
 - 4xx: Error in the client's request
 - 5xx: Error experienced by the server
- *Reason*: human-readable explanation
 - *e.g.* "OK" or "Moved Temporarily"

Common Statuses

- ✤ HTTP/1.1 200 OK
 - The request succeeded and the requested object is sent
- * HTTP/1.1 404 Not Found
 - The requested object was not found
- ✤ HTTP/1.1 301 Moved Permanently
 - The object exists, but its name has changed
 - The new URL is given as the "Location:" header value
- ✤ HTTP/1.1 500 Server Error
 - The server had some kind of unexpected error

Server Headers

- The server can provide zero or more response "headers"
 - These provide information to the client or modify how the client should process the response
- You'll encounter many in practice
 - Server: a string identifying the server software
 - Content-Type: the type of the requested object
 - Content-Length: size of requested object
 - Last-Modified: a date indicating the last time the request object was modified
 - https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers
 - <u>https://developer.mozilla.org/en-</u> <u>US/docs/Web/HTTP/Basics_of_HTTP/MIME_types</u>

A Real Response

```
HTTP/1.1 200 OK
Date: Mon, 21 May 2018 07:58:46 GMT
Server: Apache/2.2.32 (Unix) mod_ssl/2.2.32
OpenSSL/1.0.1e-fips mod_pubcookie/3.3.4a mod_uwa/3.2.1
Phusion_Passenger/3.0.11
Last-Modified: Mon, 21 May 2018 07:58:05 GMT
Content-Length: 82
Content-Type: text/html
...
<html><body>
<font color="chartreuse" size="18pt">Awesome!!</font>
</body></html>
```

Demo: Use telnet to see real HTTP responses

pollev.com/cse333sp

Which statement is FALSE about the HTTP/1.1 Protocol?

- **A.** HTTP is a standard communication protocol for the web
- **B.** A client always sends a message first before the server
- **C.** An HTTP Request can only request one resource at a time
- **D.** An HTTP Response needs to have a response body
- E. I'm not really sure...

HTTP/1.1 Protocol

- HTTP / 1.1 (1997) The protocols accepted by all current browsers and servers
 - Built after HTTP/0.9 (1991) and HTTP/1.0 (1996)
 - Better performance, richer caching features, better support for multihomed servers, and much more
- * "Chunked Transfer-Encoding" Send responses in multiple pieces (Transfer-Encoding: chunked)
 - https://en.wikipedia.org/wiki/List_of_HTTP_header_fields#transf er-encoding-response-header
- Persistent Connections: TCP connections can handle multiple requests (Connection: keep-alive)

Improvements: HTTP/2 and HTTP/3

- Human-readable text protocols can only go so far
- HTTP/2 (2015) was a push to optimize HTTP/1.1
 - Built off Google Project SPDY which aimed to reduce latency
 - Compressed headers and message body
 - Many larger companies quickly transitioned
 - https://en.wikipedia.org/wiki/HTTP/2
- HTTP/3 (2022) builds even more on HTTP/2
 - Mainly using UDP-based protocol called QUIC (holds a standard connection like TCP)
 - https://en.wikipedia.org/wiki/HTTP/3

Slow to Change: HTTP Protocols

- HTTP/1.1 is still used today (1996 Present)
 - https://almanac.httparchive.org/en/2022/http#fig-1
 - ~20% of requests still use HTTP/1.1
 - https://almanac.httparchive.org/en/2019/http#fig-3
 - Down from ~50% of requests 4 years ago
- Why is the transition taking so long?
 - Lack of knowledge about HTTP/2+
 - A good portion of web servers are still using HTTP/1.1
 - It takes engineering work to support a new HTTP protocol
 - HTTP/1.1 is human readable
 - Amongst more...

Extra Exercise #1

- Write a program that:
 - Creates a listening socket that accepts connections from clients
 - Reads a line of text from the client
 - Parses the line of text as a DNS name
 - Connects to that DNS name on port 80
 - Writes a valid HTTP request for "/"

Reads the reply and returns it to the client