
CSE333, Spring 2023L20: C++ Inheritance II, Casts

C++ Inheritance II, Casts
CSE 333 Spring 2023

Instructor: Chris Thachuk

Teaching Assistants:

Byron Jin CJ Reith

Deeksha Vatwani Edward Zhang

Humza Lala Lahari Nidadavolu

Noa Ferman Saket Gollapudi

Seulchan (Paul) Han Timmy Yang

Tim Mandzyuk Wui Wu

CSE333, Spring 2023L20: C++ Inheritance II, Casts

Relevant Course Information

❖ Exercise 9 is due next Wednesday (5/17)

❖ Homework 3 is due next Thursday (5/18)
▪ Suggestion: write index files to /tmp/, which is a local scratch

disk and is very fast, but please clean up when you’re done

❖ Reminder about late days

▪ We’ll post an updated count of your remaining late days to canvas
on Saturday

▪ You can find the automatically calculated days used per
homework written in a file in Gradescope

▪ Can use up to 2 late days per homework (if you have sufficient
late days remaining)

3

CSE333, Spring 2023L20: C++ Inheritance II, Casts

Lecture Outline

❖ C++ Inheritance

▪ Abstract Classes

▪ Static Dispatch

▪ Constructors and Destructors

▪ Assignment

❖ C++ Casting

❖ C++ Conversions

❖ Reference: C++ Primer, Chapter 15

4

CSE333, Spring 2023L20: C++ Inheritance II, Casts

Abstract Classes

❖ Sometimes we want to include a function in a class but
only implement it in derived classes

▪ In Java, we would use an abstract method

▪ In C++, we use a “pure virtual” function

• Example: virtual string noise() = 0;

❖ A class containing any pure virtual methods is abstract

▪ You can’t create instances of an abstract class

▪ Extend abstract classes and override methods to use them

❖ A class containing only pure virtual methods is the same
as a Java interface

▪ Pure type specification without implementations

5

virtual string Noise() = 0;

CSE333, Spring 2023L20: C++ Inheritance II, Casts

Reminder: virtual is “sticky”

❖ If X::F() is declared virtual, then a vtable will be
created for class X and for all of its subclasses

▪ The vtables will include function pointers for (the correct) F

❖ F() will be called using dynamic dispatch even if
overridden in a derived class without the virtual
keyword
▪ Good style to help the reader and avoid bugs by using override

• Style guide controversy, if you use override should you use
virtual in derived classes? Recent style guides say just use
override, but you’ll sometimes see both, particularly in older code

6

CSE333, Spring 2023L20: C++ Inheritance II, Casts

What happens if we omit “virtual”?

❖ By default, without virtual, methods are dispatched
statically
▪ At compile time, the compiler writes in a call to the address of

the class’ method in the .text segment

• Based on the compile-time visible type of the callee

▪ This is different than Java

7

class Derived : public Base { ... };

int main(int argc, char** argv) {

Derived d;

Derived* dp = &d;

Base* bp = &d;

dp->Foo();

bp->Foo();

return EXIT_SUCCESS;

}

Derived::Foo()

...

Base::Foo()

...

CSE333, Spring 2023L20: C++ Inheritance II, Casts

Static Dispatch Example

❖ Removed virtual on methods:

8

DividendStock dividend();

DividendStock* ds = ÷nd;

Stock* s = ÷nd;

// Invokes DividendStock::GetMarketValue()

ds->GetMarketValue();

// Invokes Stock::GetMarketValue()

s->GetMarketValue();

// invokes Stock::GetProfit().

// Stock::GetProfit() invokes Stock::GetMarketValue().

s->GetProfit();

// invokes Stock::GetProfit(), since that method is inherited.

// Stock::GetProfit() invokes Stock::GetMarketValue().

ds->GetProfit();

double Stock::GetMarketValue() const;

double Stock::GetProfit() const;

Stock.h

CSE333, Spring 2023L20: C++ Inheritance II, Casts

Why Not Always Use virtual?

❖ Two (fairly uncommon) reasons:

▪ Efficiency:

• Non-virtual function calls are a tiny bit faster (no indirect lookup)

• A class with no virtual functions has objects without a vptr field

▪ Control:

• If F() calls G() in class X and G is not virtual, we’re guaranteed to
call X::G() and not G() in some subclass

– Particularly useful for framework design

❖ In Java, all methods are virtual, except static class
methods, which aren’t associated with objects

❖ In C++ and C#, you can pick what you want
▪ Omitting virtual can cause obscure bugs

▪ (Most of the time, you want member function to be virtual)
9

CSE333, Spring 2023L20: C++ Inheritance II, Casts

Mixed Dispatch

❖ Which function is called is a mix of both compile time and
runtime decisions as well as how you call the function
▪ If called on an object (e.g., obj.Fcn()), usually optimized into a

hard-coded function call at compile time

▪ If called via a pointer or reference:
PromisedT* ptr = new ActualT;

ptr->Fcn(); // which version is called?

10

CSE333, Spring 2023L20: C++ Inheritance II, Casts

Mixed Dispatch Example

11

class A {

public:

// m1 will use static dispatch

void M1() { cout << "a1, "; }

// m2 will use dynamic dispatch

virtual void M2() { cout << "a2"; }

};

class B : public A {

public:

void M1() { cout << "b1, "; }

// m2 is still virtual by default

void M2() { cout << "b2"; }

};

void main(int argc,

char** argv) {

A a;

B b;

A* a_ptr_a = &a;

A* a_ptr_b = &b;

B* b_ptr_a = &a;

B* b_ptr_b = &b;

a_ptr_a->M1(); //

a_ptr_a->M2(); //

a_ptr_b->M1(); //

a_ptr_b->M2(); //

b_ptr_b->M1(); //

b_ptr_b->M2(); //

}

mixed.cc

