YA UNIVERSITY of WASHINGTON L20: C++ Inheritance II, Casts CSE333, Spring 2023

C++ Inheritance Il, Casts
CSE 333 Spring 2023

Instructor: Chris Thachuk

Teaching Assistants:

Byron Jin CJ Reith

Deeksha Vatwani Edward Zhang
Humza Lala Lahari Nidadavolu
Noa Ferman Saket Gollapudi
Seulchan (Paul) Han Timmy Yang

Tim Mandzyuk Wui Wu

YA UNIVERSITY of WASHINGTON L20: C++ Inheritance II, Casts CSE333, Spring 2023

Relevant Course Information

» Exercise 9 is due next Wednesday (5/17)

» Homework 3 is due next Thursday (5/18)

= Suggestion: write index files to /tmp/, which is a local scratch
disk and is very fast, but please clean up when you’re done

» Reminder about late days

= We’'ll post an updated count of your remaining late days to canvas
on Saturday

" You can find the automatically calculated days used per
homework written in a file in Gradescope

= Can use up to 2 late days per homework (if you have sufficient
late days remaining)

YA UNIVERSITY of WASHINGTON L20: C++ Inheritance II, Casts CSE333, Spring 2023

Lecture Outline

’0

L)

» C++ Inheritance

= Abstract Classes

= Static Dispatch

= Constructors and Destructors

" Assignment

C++ Casting

L)

0’0

C++ Conversions

L)

0’0

‘0

D)

Reference: C++ Primer, Chapter 15

YA UNIVERSITY of WASHINGTON L20: C++ Inheritance II, Casts CSE333, Spring 2023

Abstract Classes

+~ Sometimes we want to include a function in a class but
only implement it in derived classes
" |n Java, we would use an abstract method
" |n C++, we use a “pure virtual” function
- Example: [virtual string Noise() = O0;

+ A class containing any pure virtual methods is abstract
" You can’t create instances of an abstract class
= Extend abstract classes and override methods to use them

+ A class containing only pure virtual methods is the same
as a Java interface

" Pure type specification without implementations

YA UNIVERSITY of WASHINGTON L20: C++ Inheritance II, Casts CSE333, Spring 2023

Reminder: virtual is “sticky”

« IfX::F () is declared virtual, then a vtable will be
created for class X and for all of its subclasses

" The vtables will include function pointers for (the correct) F

« F () will be called using dynamic dispatch even if
overridden in a derived class without the virtual
keyword

" Good style to help the reader and avoid bugs by using override

- Style guide controversy, if you use override should you use
virtual in derived classes? Recent style guides say just use
override, but you’'ll sometimes see both, particularly in older code

CSE333, Spring 2023

YW UNIVERSITY of WASHINGTON L20: C++ Inheritance II, Casts

What happens if we omit “virtual”?

+ By default, without virtual, methods are dispatched

statically
= At compile time, the compiler writes ina call to the address of
the class’ method in the . text segment

- Based on the compile-time visible type of the callee

= This is different than Java

(class Derived : public Base { ... };
» Derived: :Foo ()

int main(int argc, char** argv) {
Derived d;
Derived* dp = &d;
Base* bp = &d;
dp->Foo () ;
bp->Foo () ;
return EXIT SUCCESS;

» Base: :Foo()

YA UNIVERSITY of WASHINGTON L20: C++ Inheritance II, Casts CSE333, Spring 2023

Static Dispatch Example

+» Removed virtual on methods: Stock.h

double Stock::GetMarketValue () const;
double Stock::GetProfit () const;

DividendStock dividend() ;
DividendStock* ds = ÷nd;
Stock* s = ÷nd;

// Invokes DividendStock::GetMarketValue ()
ds—->GetMarketValue () ;

// Invokes Stock::GetMarketValue ()
s—->GetMarketValue () ;

// invokes Stock::GetProfit ().
// Stock::GetProfit() invokes Stock::GetMarketValue().
s—->GetProfit () ;

// 1invokes Stock::GetProfit (), since that method is inherited.
// Stock::GetProfit () invokes Stock::GetMarketValue().
ds—->GetProfit () ;

YA UNIVERSITY of WASHINGTON L20: C++ Inheritance II, Casts CSE333, Spring 2023

Why Not Always Use virtual?

+ Two (fairly uncommon) reasons:
= Efficiency:
- Non-virtual function calls are a tiny bit faster (no indirect lookup)
- A class with no virtual functions has objects without a vptr field

= Control:

« IfF () calls G () inclass Xand G is not virtual, we're guaranteed to
call X: :G () and not G () in some subclass

— Particularly useful for framework design

+ In Java, all methods are virtual, except static class
methods, which aren’t associated with objects

0

+ In C++ and C#, you can pick what you want
= Omitting virtual can cause obscure bugs
" (Most of the time, you want member function to be virtual)

YA UNIVERSITY of WASHINGTON L20: C++ Inheritance II, Casts CSE333, Spring 2023

Mixed Dispatch

+» Which function is called is a mix of both compile time and
runtime decisions as well as how you call the function

= |f called on an object (e.g., ob7j .Fecn ()), usually optimized into a
hard-coded function call at compile time

= |f called via a pointer or reference:
PromisedT* ptr = new ActualT;
ptr->Fen(); // which version 1is called?

'

Is Fen () Yes 3 PSRl =ONTE B [FE, W Yes Dynamic dispatch of
. : marked virtual in : \
defined in P cedT or in classes it - most-derived version of
PromisedT? rom'lsel Fcn () visible to ActualT
derives from?

[e | o

Compiler Static dispatch of
Error PromisedT::Fcn()

10

YW UNIVERSITY of WASHINGTON

L20: C++ Inheritance I, Casts

CSE333, Spring 2023

Mixed Dispatch Example

mixed.cc

(class A {
public:
// ml will use static dispatch

void M1() { cout << "al, "; }
// m2 will use dynamic dispatch
virtual void M2 () { cout << "az2";
I
class B public A {
public:
void M1() { cout << "bl, "; }

// m2 is still virtual by default
void M2 () { cout << "b2"; }

b g

\.

}

N\

.

4 . . g
vold main (int argc,

char** argv) {

A a;

B b;

A* a ptr a = é&a;
A* a ptr b = &b;
B* b ptr a = &a;
B* b ptr b = &b;

a ptr a->M1(); //
a ptr a->M2(); //
a ptr b->M1(); //
a ptr b->M2(); //
b ptr b->M1(); //
b ptr b->M2(); //

}

11

