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Relevant Course Information

» Exercise 9 is due next Wednesday (5/17)

» Homework 3 is due next Thursday (5/18)

= Suggestion: write index files to /tmp/, which is a local scratch
disk and is very fast, but please clean up when you’re done

» Reminder about late days

= We’'ll post an updated count of your remaining late days to canvas
on Saturday

" You can find the automatically calculated days used per
homework written in a file in Gradescope

= Can use up to 2 late days per homework (if you have sufficient
late days remaining)
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Reference: C++ Primer, Chapter 15
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Abstract Classes

+~ Sometimes we want to include a function in a class but
only implement it in derived classes
" |n Java, we would use an abstract method
" |n C++, we use a “pure virtual” function
- Example: [ virtual string Noise() = O0;

+ A class containing any pure virtual methods is abstract
" You can’t create instances of an abstract class
= Extend abstract classes and override methods to use them

+ A class containing only pure virtual methods is the same
as a Java interface

" Pure type specification without implementations
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Reminder: virtual is “sticky”

« IfX::F () is declared virtual, then a vtable will be
created for class X and for all of its subclasses

" The vtables will include function pointers for (the correct) F

« F () will be called using dynamic dispatch even if
overridden in a derived class without the virtual
keyword

" Good style to help the reader and avoid bugs by using override

- Style guide controversy, if you use override should you use
virtual in derived classes? Recent style guides say just use
override, but you’'ll sometimes see both, particularly in older code
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What happens if we omit “virtual”?

+ By default, without virtual, methods are dispatched

statically
= At compile time, the compiler writes ina call to the address of
the class’ method in the . text segment

- Based on the compile-time visible type of the callee

= This is different than Java

(class Derived : public Base { ... };
» Derived: :Foo ()

int main(int argc, char** argv) {
Derived d;
Derived* dp = &d;
Base* bp = &d;
dp->Foo () ;
bp->Foo () ;
return EXIT SUCCESS;

» Base: :Foo()
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Static Dispatch Example

+» Removed virtual on methods: Stock.h

double Stock::GetMarketValue () const;
double Stock::GetProfit () const;

DividendStock dividend() ;
DividendStock* ds = &dividend;
Stock* s = &dividend;

// Invokes DividendStock::GetMarketValue ()
ds—->GetMarketValue () ;

// Invokes Stock::GetMarketValue ()
s—->GetMarketValue () ;

// invokes Stock::GetProfit ().
// Stock::GetProfit() invokes Stock::GetMarketValue().
s—->GetProfit () ;

// 1invokes Stock::GetProfit (), since that method is inherited.
// Stock::GetProfit () invokes Stock::GetMarketValue().
ds—->GetProfit () ;




YA UNIVERSITY of WASHINGTON L20: C++ Inheritance II, Casts CSE333, Spring 2023

Why Not Always Use virtual?

+ Two (fairly uncommon) reasons:
= Efficiency:
- Non-virtual function calls are a tiny bit faster (no indirect lookup)
- A class with no virtual functions has objects without a vptr field

= Control:

« IfF () calls G () inclass Xand G is not virtual, we're guaranteed to
call X: :G () and not G () in some subclass

— Particularly useful for framework design

+ In Java, all methods are virtual, except static class
methods, which aren’t associated with objects

0

+ In C++ and C#, you can pick what you want
= Omitting virtual can cause obscure bugs
" (Most of the time, you want member function to be virtual)
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Mixed Dispatch

+» Which function is called is a mix of both compile time and
runtime decisions as well as how you call the function

= |f called on an object (e.g., ob7j .Fecn () ), usually optimized into a
hard-coded function call at compile time

= |f called via a pointer or reference:
PromisedT* ptr = new ActualT;
ptr->Fen(); // which version 1is called?

'

Is Fen () Yes 3 PSRl =ONTE B [FE, W Yes Dynamic dispatch of
. : marked virtual in : \
defined in P  cedT or in classes it - most-derived version of
PromisedT? rom'lsel Fcn () visible to ActualT
derives from?

[ e | o

Compiler Static dispatch of
Error PromisedT::Fcn()

10



YW UNIVERSITY of WASHINGTON

L20: C++ Inheritance I, Casts

CSE333, Spring 2023

Mixed Dispatch Example

mixed.cc

(class A {
public:
// ml will use static dispatch

void M1() { cout << "al, "; }
// m2 will use dynamic dispatch
virtual void M2 () { cout << "az2";
I
class B public A {
public:
void M1() { cout << "bl, "; }

// m2 is still virtual by default
void M2 () { cout << "b2"; }

b g

\.

}

N\

.

4 . . g
vold main (int argc,

char** argv) {

A a;

B b;

A* a ptr a = é&a;
A* a ptr b = &b;
B* b ptr a = &a;
B* b ptr b = &b;

a ptr a->M1(); //
a ptr a->M2(); //
a ptr b->M1(); //
a ptr b->M2(); //
b ptr b->M1(); //
b ptr b->M2(); //

}
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