
CSE333, Spring 2023L13: C++ Heap

C++ Heap
CSE 333 Spring 2023

Instructor: Chris Thachuk

Teaching Assistants:

Byron Jin CJ Reith

Deeksha Vatwani Edward Zhang

Humza Lala Lahari Nidadavolu

Noa Ferman Saket Gollapudi

Seulchan (Paul) Han Timmy Yang

Tim Mandzyuk Wui Wu

CSE333, Spring 2023L13: C++ Heap

Relevant Course Information

❖ Exercise 7 out today, due next Monday (5/1)

▪ Will build on Exercise 6 and use what a lot of is discussed today

❖ Homework 2 due Thursday (4/27)

▪ File system crawler, indexer, and search engine

▪ Don’t forget to clone your repo to double-/triple-/quadruple-
check compilation!

▪ Don’t modify the header files!

❖ Midterm: May 3 - 5

▪ Take home (Gradescope) and open notes

▪ Will involve reflecting on previous assignments

▪ Individual, but high-level discussion allowed (“Gilligan’s Island Rule”)

2

CSE333, Spring 2023L13: C++ Heap

Lecture Outline

❖ Using the Heap
▪ new / delete / delete[]

3

CSE333, Spring 2023L13: C++ Heap

C++11 nullptr

❖ C and C++ have long used NULL as a pointer value that
references nothing

❖ C++11 introduced a new literal for this: nullptr

▪ New reserved word

▪ Interchangeable with NULL for all practical purposes, but it has
type T* for any/every T, and is not an integer value

• Avoids funny edge cases (see C++ references for details)

• Still can convert to/from integer 0 for tests, assignment, etc.

▪ Advice: prefer nullptr in C++11 code

• Though NULL will also be around for a long, long time

5

STYLE
TIP

CSE333, Spring 2023L13: C++ Heap

new/delete

❖ To allocate on the heap using C++, you use the new
keyword instead of malloc() from stdlib.h

▪ You can use new to allocate an object (e.g., new Point)

▪ You can use new to allocate a primitive type (e.g., new int)

❖ To deallocate a heap-allocated object or primitive, use the
delete keyword instead of free() from stdlib.h

▪ Don’t mix and match!

• Never free() something allocated with new

• Never delete something allocated with malloc()

• Careful if you’re using a legacy C code library or module in C++

6

CSE333, Spring 2023L13: C++ Heap

new/delete Behavior

❖ new behavior:

▪ When allocating you can specify a constructor or initial value

• e.g., new Point(1, 2), new int(333)

▪ If no initialization specified, it will use default constructor for
objects and uninitialized (“mystery”) data for primitives

▪ You don’t need to check that new returns nullptr

• When an error is encountered, an exception is thrown (that we won’t
worry about)

❖ delete behavior:

▪ If you delete already deleted memory, then you will get
undefined behavior (same as when you double free in C)

7

CSE333, Spring 2023L13: C++ Heap

new/delete Example

8

#include "Point.h"

... // definitions of AllocateInt() and AllocatePoint()

int main() {

Point* x = AllocatePoint(1, 2);

int* y = AllocateInt(3);

cout << "x's x_ coord: " << x->get_x() << endl;

cout << "y: " << y << ", *y: " << *y << endl;

delete x;

delete y;

return EXIT_SUCCESS;

}

int* AllocateInt(int x) {

int* heapy_int = new int;

*heapy_int = x;

return heapy_int;

}

Point* AllocatePoint(int x, int y) {

Point* heapy_pt = new Point(x,y);

return heapy_pt;

}

heappoint.cc

CSE333, Spring 2023L13: C++ Heap

Dynamically Allocated Arrays

❖ To dynamically allocate an array:

▪ Default initialize:

❖ To dynamically deallocate an array:

▪ Use delete[] name;

▪ It is an incorrect to use “delete name;” on an array

• The compiler probably won’t catch this, though (!) because it can’t
always tell if name* was allocated with new type[size];

or new type;

– Especially inside a function where a pointer parameter could point to a
single item or an array and there’s no way to tell which!

• Result of wrong delete is undefined behavior

9

type* name = new type[size];

delete[] name;

CSE333, Spring 2023L13: C++ Heap

Arrays Example (primitive)

10

#include "Point.h"

int main() {

int stack_int;

int* heap_int = new int;

int* heap_int_init = new int(12);

int stack_arr[3];

int* heap_arr = new int[3];

int* heap_arr_init_val = new int[3]();

int* heap_arr_init_lst = new int[3]{4, 5}; // C++11

...

delete heap_int; //

delete heap_int_init; //

delete heap_arr; //

delete[] heap_arr_init_val; //

return EXIT_SUCCESS;

}

arrays.cc

CSE333, Spring 2023L13: C++ Heap

Arrays Example (class objects)

11

#include "Point.h"

int main() {

...

Point stack_pt(1, 2);

Point* heap_pt = new Point(1, 2);

Point* heap_pt_arr_err = new Point[2];

Point* heap_pt_arr_init_lst = new Point[2]{{1, 2}, {3, 4}};

// C++11

...

delete heap_pt;

delete[] heap_pt_arr_init_lst;

return EXIT_SUCCESS;

}

arrays.cc

CSE333, Spring 2023L13: C++ Heap

malloc vs. new

malloc() new

What is it? a function an operator or keyword

How often used (in C)? often never

How often used (in C++)? rarely often

Allocated memory for anything
arrays, structs, objects,

primitives

Returns
a void*

(should be cast)
appropriate pointer type

(doesn’t need a cast)

When out of memory returns NULL throws an exception

Deallocating free() delete or delete[]

12

CSE333, Spring 2023L13: C++ Heap

▪ If there is an error,
how would you fix it?

A. Bad dereference

B. Bad delete

C. Memory leak

D. “Works” fine

E. We’re lost…

13

pollev.com/cse333sp

What will happen when we invoke Bar()?

Foo::Foo(int val) { Init(val); }

Foo::~Foo() { delete foo_ptr_; }

void Foo::Init(int val) {

foo_ptr_ = new int;

*foo_ptr_ = val;

}

Foo& Foo::operator=(const Foo& rhs) {

delete foo_ptr_;

Init(*(rhs.foo_ptr_));

return *this;

}

void Bar() {

Foo a(10);

Foo b(20);

a = a;

}

CSE333, Spring 2023L13: C++ Heap

Rule of Three, Revisited

❖ Now what will happen when we invoke Bar()?

▪ If there is an error,
how would you fix it?

14

Foo::Foo(int val) { Init(val); }

Foo::~Foo() { delete foo_ptr_; }

void Foo::Init(int val) {

foo_ptr_ = new int;

*foo_ptr_ = val;

}

Foo& Foo::operator=(const Foo& rhs) {

if (&rhs != this) {

delete foo_ptr_;

Init(*(rhs.foo_ptr_));

}

return *this;

}

void Bar() {

Foo a(10);

Foo b = a;

}

CSE333, Spring 2023L13: C++ Heap

Extra Exercise #1

❖ Write a C++ function that:
▪ Uses new to dynamically allocate an array of strings and uses
delete[] to free it

▪ Uses new to dynamically allocate an array of pointers to strings

• Assign each entry of the array to a string allocated using new

▪ Cleans up before exiting

• Use delete to delete each allocated string

• Uses delete[] to delete the string pointer array

• (whew!)

15

