
CSE333, Spring 2023L12: C++ Class Details, Heap

C++ Class Details, Heap
CSE 333 Spring 2023

Instructor: Chris Thachuk

Teaching Assistants:

Byron Jin CJ Reith

Deeksha Vatwani Edward Zhang

Humza Lala Lahari Nidadavolu

Noa Ferman Saket Gollapudi

Seulchan (Paul) Han Timmy Yang

Tim Mandzyuk Wui Wu

CSE333, Spring 2023L12: C++ Class Details, Heap

Relevant Course Information

❖ Exercise 6 due Monday

❖ Exercise 7 out by Monday

▪ Will build on Exercise 6 and use what a lot of is discussed today

❖ Homework 2 due Thursday (4/27)

▪ File system crawler, indexer, and search engine

▪ Don’t forget to clone your repo to double-/triple-/quadruple-
check compilation!

▪ Don’t modify the header files!

2

CSE333, Spring 2023L12: C++ Class Details, Heap

Lecture Outline

❖ Class Details

▪ Filling in some gaps from last time

❖ Using the Heap
▪ new / delete / delete[]

3

CSE333, Spring 2023L12: C++ Class Details, Heap

Rule of Three

❖ If you define any of:

1) Destructor

2) Copy Constructor

3) Assignment (operator=)

❖ Then you should normally define all three

▪ Can explicitly ask for default synthesized versions (C++11):

4

class Point {

public:

Point() = default; // the default ctor

~Point() = default; // the default dtor

Point(const Point& copyme) = default; // the default cctor

Point& operator=(const Point& rhs) = default; // the default "="

...

CSE333, Spring 2023L12: C++ Class Details, Heap

Dealing with the Insanity (C++11)

❖ C++ style guide tip:

▪ Disabling the copy constructor and assignment operator can avoid
confusion from implicit invocation and excessive copying

5

class Point {

public:

Point(const int x, const int y) : x_(x), y_(y) { } // ctor

...

Point(const Point& copyme) = delete; // declare cctor and "=" as

Point& operator=(const Point& rhs) = delete; // as deleted (C++11)

private:

...

}; // class Point

Point w; // compiler error (no default constructor)

Point x(1, 2); // OK!

Point y = w; // compiler error (no copy constructor)

y = x; // compiler error (no assignment operator)

Point_2011.h

CSE333, Spring 2023L12: C++ Class Details, Heap

Access Control

❖ Access modifiers for members:
▪ public: accessible to all parts of the program

▪ private: accessible to the member functions of the class

• Private to class, not object instances

▪ protected: accessible to member functions of the class and
any derived classes (subclasses – more to come, later)

❖ Reminders:

▪ Access modifiers apply to all members that follow until another
access modifier is reached

▪ If no access modifier is specified, struct members default to
public and class members default to private

6

CSE333, Spring 2023L12: C++ Class Details, Heap

Nonmember Functions

❖ “Nonmember functions” are just normal functions that
happen to use some class

▪ Called like a regular function instead of as a member of a class
object instance

• This gets a little weird when we talk about operators…

▪ These do not have access to the class’ private members

❖ Useful nonmember functions often included as part of
interface to a class

▪ Declaration goes in header file, but outside of class definition

7

CSE333, Spring 2023L12: C++ Class Details, Heap

friend Nonmember Functions

❖ A class can give a nonmember function (or class) access to
its non-public members by declaring it as a friend
within its definition

▪ Not a class member, but has access privileges as if it were

▪ friend functions are usually unnecessary if your class includes
appropriate “getter” public functions

8

class Complex {

...

friend std::istream& operator>>(std::istream& in, Complex& a);

...

}; // class Complex

std::istream& operator>>(std::istream& in, Complex& a) {

...

}

Complex.h

Complex.cc

CSE333, Spring 2023L12: C++ Class Details, Heap

When to use Nonmember and friend

❖ Member functions:

▪ Operators that modify the object being called on

• Assignment operator (operator=)

▪ “Core” non-operator functionality that is part of the class
interface

❖ Nonmember functions:

▪ Used for commutative operators

• e.g., so v1 + v2 is invoked as operator+(v1, v2)instead of
v1.operator+(v2)

▪ If operating on two types and the class is on the right-hand side

• e.g., cin >> complex;

▪ Returning a “new” object, not modifying an existing one

▪ Only grant friend permission if you NEED to

9

There is more to C++ object design that we don’t

have time to get to; these are good rules of thumb,

but be sure to think about your class carefully!

STYLE
TIP

CSE333, Spring 2023L12: C++ Class Details, Heap

10

pollev.com/cse333sp

If we wanted to overload operator== to
compare two Point objects, what type
of function should it be?
❖ Reminder that Point has getters and a setter

A. non-friend + member

B. friend + member

C. non-friend + non-member

D. friend + non-member

E. I’m lost…

CSE333, Spring 2023L12: C++ Class Details, Heap

Namespaces

❖ Each namespace is a separate scope

▪ Useful for avoiding symbol collisions!

❖ Namespace definition:
▪ namespace name {

// declarations go here

}

▪ Doesn’t end with a semi-colon and doesn’t add to the indentation
of its contents

▪ Creates a new namespace name if it did not exist, otherwise adds
to the existing namespace (!)

• This means that components (e.g., classes, functions) of a namespace
can be defined in multiple source files

11

namespace name {

// declarations go here

} // namespace name

ll::Iterator

ht::Iterator

Same name, but

different

namespace

Namespace doesn’t add

indentation to contents

Comment to remind that this

is end of namespace

lowercase

CSE333, Spring 2023L12: C++ Class Details, Heap

Classes vs. Namespaces

❖ They seems somewhat similar, but classes are not
namespaces:

▪ There are no instances/objects of a namespace; a namespace is
just a group of logically-related things (classes, functions, etc.)

▪ To access a member of a namespace, you must use the fully
qualified name (i.e., nsp_name::member)

• Unless you are using that namespace

• You only used the fully qualified name of a class member when you
are defining it outside of the scope of the class definition

12

CSE333, Spring 2023L12: C++ Class Details, Heap

Complex Example Walkthrough

See:
Complex.h

Complex.cc

testcomplex.cc

13

CSE333, Spring 2023L12: C++ Class Details, Heap

Lecture Outline

❖ Class Details

▪ Filling in some gaps from last time

❖ Using the Heap
▪ new / delete / delete[]

14

CSE333, Spring 2023L12: C++ Class Details, Heap

C++11 nullptr

❖ C and C++ have long used NULL as a pointer value that
references nothing

❖ C++11 introduced a new literal for this: nullptr

▪ New reserved word

▪ Interchangeable with NULL for all practical purposes, but it has
type T* for any/every T, and is not an integer value

• Avoids funny edge cases (see C++ references for details)

• Still can convert to/from integer 0 for tests, assignment, etc.

▪ Advice: prefer nullptr in C++11 code

• Though NULL will also be around for a long, long time

15

STYLE
TIP

CSE333, Spring 2023L12: C++ Class Details, Heap

new/delete

❖ To allocate on the heap using C++, you use the new
keyword instead of malloc() from stdlib.h

▪ You can use new to allocate an object (e.g., new Point)

▪ You can use new to allocate a primitive type (e.g., new int)

❖ To deallocate a heap-allocated object or primitive, use the
delete keyword instead of free() from stdlib.h

▪ Don’t mix and match!

• Never free() something allocated with new

• Never delete something allocated with malloc()

• Careful if you’re using a legacy C code library or module in C++

16

CSE333, Spring 2023L12: C++ Class Details, Heap

new/delete Behavior

❖ new behavior:

▪ When allocating you can specify a constructor or initial value

• e.g., new Point(1, 2), new int(333)

▪ If no initialization specified, it will use default constructor for
objects and uninitialized (“mystery”) data for primitives

▪ You don’t need to check that new returns nullptr

• When an error is encountered, an exception is thrown (that we won’t
worry about)

❖ delete behavior:

▪ If you delete already deleted memory, then you will get
undefined behavior (same as when you double free in C)

17

CSE333, Spring 2023L12: C++ Class Details, Heap

new/delete Example

18

#include "Point.h"

... // definitions of AllocateInt() and AllocatePoint()

int main() {

Point* x = AllocatePoint(1, 2);

int* y = AllocateInt(3);

cout << "x's x_ coord: " << x->get_x() << endl;

cout << "y: " << y << ", *y: " << *y << endl;

delete x;

delete y;

return EXIT_SUCCESS;

}

int* AllocateInt(int x) {

int* heapy_int = new int;

*heapy_int = x;

return heapy_int;

}

Point* AllocatePoint(int x, int y) {

Point* heapy_pt = new Point(x,y);

return heapy_pt;

}

heappoint.cc

CSE333, Spring 2023L12: C++ Class Details, Heap

Dynamically Allocated Arrays

❖ To dynamically allocate an array:

▪ Default initialize:

❖ To dynamically deallocate an array:

▪ Use delete[] name;

▪ It is an incorrect to use “delete name;” on an array

• The compiler probably won’t catch this, though (!) because it can’t
always tell if name* was allocated with new type[size];

or new type;

– Especially inside a function where a pointer parameter could point to a
single item or an array and there’s no way to tell which!

• Result of wrong delete is undefined behavior

19

type* name = new type[size];

delete[] name;

CSE333, Spring 2023L12: C++ Class Details, Heap

Arrays Example (primitive)

20

#include "Point.h"

int main() {

int stack_int;

int* heap_int = new int;

int* heap_int_init = new int(12);

int stack_arr[3];

int* heap_arr = new int[3];

int* heap_arr_init_val = new int[3]();

int* heap_arr_init_lst = new int[3]{4, 5}; // C++11

...

delete heap_int; //

delete heap_int_init; //

delete heap_arr; //

delete[] heap_arr_init_val; //

return EXIT_SUCCESS;

}

arrays.cc

CSE333, Spring 2023L12: C++ Class Details, Heap

Arrays Example (class objects)

21

#include "Point.h"

int main() {

...

Point stack_pt(1, 2);

Point* heap_pt = new Point(1, 2);

Point* heap_pt_arr_err = new Point[2];

Point* heap_pt_arr_init_lst = new Point[2]{{1, 2}, {3, 4}};

// C++11

...

delete heap_pt;

delete[] heap_pt_arr_init_lst;

return EXIT_SUCCESS;

}

arrays.cc

CSE333, Spring 2023L12: C++ Class Details, Heap

malloc vs. new

malloc() new

What is it? a function an operator or keyword

How often used (in C)? often never

How often used (in C++)? rarely often

Allocated memory for anything
arrays, structs, objects,

primitives

Returns
a void*

(should be cast)
appropriate pointer type

(doesn’t need a cast)

When out of memory returns NULL throws an exception

Deallocating free() delete or delete[]

22

CSE333, Spring 2023L12: C++ Class Details, Heap

▪ If there is an error,
how would you fix it?

A. Bad dereference

B. Bad delete

C. Memory leak

D. “Works” fine

E. We’re lost…

23

pollev.com/cse333sp

What will happen when we invoke Bar()?

Foo::Foo(int val) { Init(val); }

Foo::~Foo() { delete foo_ptr_; }

void Foo::Init(int val) {

foo_ptr_ = new int;

*foo_ptr_ = val;

}

Foo& Foo::operator=(const Foo& rhs) {

delete foo_ptr_;

Init(*(rhs.foo_ptr_));

return *this;

}

void Bar() {

Foo a(10);

Foo b(20);

a = a;

}

CSE333, Spring 2023L12: C++ Class Details, Heap

Rule of Three, Revisited

❖ Now what will happen when we invoke Bar()?

▪ If there is an error,
how would you fix it?

24

Foo::Foo(int val) { Init(val); }

Foo::~Foo() { delete foo_ptr_; }

void Foo::Init(int val) {

foo_ptr_ = new int;

*foo_ptr_ = val;

}

Foo& Foo::operator=(const Foo& rhs) {

if (&rhs != this) {

delete foo_ptr_;

Init(*(rhs.foo_ptr_));

}

return *this;

}

void Bar() {

Foo a(10);

Foo b = a;

}

CSE333, Spring 2023L12: C++ Class Details, Heap

Extra Exercise #1

❖ Write a C++ function that:
▪ Uses new to dynamically allocate an array of strings and uses
delete[] to free it

▪ Uses new to dynamically allocate an array of pointers to strings

• Assign each entry of the array to a string allocated using new

▪ Cleans up before exiting

• Use delete to delete each allocated string

• Uses delete[] to delete the string pointer array

• (whew!)

25

CSE333, Spring 2023L12: C++ Class Details, Heap

An extra example for practice with class design and heap-
allocated data: a C-string wrapper class classed Str.

26

CSE333, Spring 2023L12: C++ Class Details, Heap

Heap Member (extra example)

❖ Let’s build a class to simulate some of the functionality of
the C++ string

▪ Internal representation: c-string to hold characters

❖ What might we want to implement in the class?

27

CSE333, Spring 2023L12: C++ Class Details, Heap

Str Class

28

#include <iostream>

using namespace std; // should replace this

class Str {

public:

Str(); // default ctor

Str(const char* s); // c-string ctor

Str(const Str& s); // copy ctor

~Str(); // dtor

int length() const; // return length of string

char* c_str() const; // return a copy of st_

void append(const Str& s);

Str& operator=(const Str& s); // string assignment

friend std::ostream& operator<<(std::ostream& out, const Str& s);

private:

char* st_; // c-string on heap (terminated by '\0')

}; // class Str

Str.h

CSE333, Spring 2023L12: C++ Class Details, Heap

Str::append (extra example)

❖ Complete the append() member function:
▪ char* strncpy(char* dst, char* src, size_t num);

▪ char* strncat(char* dst, char* src, size_t num);

29

#include <cstring>

#include "Str.h"

// append contents of s to the end of this string

void Str::append(const Str& s) {

}

CSE333, Spring 2023L12: C++ Class Details, Heap

Clone

❖ C++11 style guide tip:

▪ If you disable them, then you instead may want an explicit
“Clone” function that can be used when occasionally needed

30

class Point {

public:

Point(const int x, const int y) : x_(x), y_(y) { } // ctor

void Clone(const Point& copy_from_me);

...

Point(Point& copyme) = delete; // disable cctor

Point& operator=(Point& rhs) = delete; // disable "="

private:

...

}; // class Point

Point_2011.h

Point x(1, 2); // OK

Point y(3, 4); // OK

x.Clone(y); // OK

sanepoint.cc

