
CSE333, Spring 2023L10: C++ Constructor Insanity

C++ Constructor Insanity (part 1)
CSE 333 Spring 2023

Instructor: Chris Thachuk

Teaching Assistants:

Byron Jin CJ Reith

Deeksha Vatwani Edward Zhang

Humza Lala Lahari Nidadavolu

Noa Ferman Saket Gollapudi

Seulchan (Paul) Han Timmy Yang

Tim Mandzyuk Wui Wu

CSE333, Spring 2023L10: C++ Constructor Insanity

Relevant Course Information

❖ Exercise 6 released today, due next Monday (4/24)

▪ Write a substantive class in C++ (uses a lot of what we will talk
about in lecture today)

▪ Testable material on midterm, but will count as a “bonus” w.r.t.
exercise grading

❖ Homework 2 due next Thursday (4/27)

▪ File system crawler, indexer, and search engine

▪ Note: libhw1.a (yours or ours) and the .h files from hw1 need
to be in right directory (~yourgit/hw1/)

▪ Note: use Ctrl-D to exit searchshell

▪ Tip: test on directory of small self-made files

▪ Partner confirmation by 4/20 @ 11:59 PST; No exceptions!

3

CSE333, Spring 2023L10: C++ Constructor Insanity

Lecture Outline (cont’d from last lecture)

❖ C++ Classes Intro

4

CSE333, Spring 2023L10: C++ Constructor Insanity

Classes

❖ Class definition syntax (in a .h file):

▪ Members can be functions (methods) or data (variables)

❖ Class member function definition syntax (in a .cc file):

▪ (1) define within the class definition or (2) declare within the class
definition and then define elsewhere

5

class Name {

public:

// public member definitions & declarations go here

private:

// private member definitions & declarations go here

}; // class Name

retType Name::MethodName(type1 param1, …, typeN paramN) {

// body statements

}

CSE333, Spring 2023L10: C++ Constructor Insanity

Class Organization

❖ It’s a little more complex than in C when modularizing
with struct definition:

▪ Class definition is part of interface and should go in .h file

• Private members still must be included in definition (!)

▪ Usually put member function definitions into companion .cc file
with implementation details

• Common exception: setter and getter methods

▪ These files can also include non-member functions that use the
class

❖ Unlike Java, you can name files anything you want
▪ Typically Name.cc and Name.h for class Name

6

CSE333, Spring 2023L10: C++ Constructor Insanity

Const & Classes

❖ Like other data types, objects can be declared as const:

▪ Once a const object has been constructed, its member variables
can’t be changed

▪ Can only invoke member functions that are labeled const

❖ You can declare a member function of a class as const

▪ This means that it cannot modify the object it was called on

• The compiler will treat member variables as const inside the
function at compile time

▪ If a member function doesn’t modify the object, mark it const!

7

CSE333, Spring 2023L10: C++ Constructor Insanity

Class Definition (.h file)

8

#ifndef POINT_H_

#define POINT_H_

class Point {

public:

Point(const int x, const int y); // constructor

int get_x() const { return x_; } // inline member function

int get_y() const { return y_; } // inline member function

double Distance(const Point& p) const; // member function

void SetLocation(const int x, const int y); // member function

private:

int x_; // data member

int y_; // data member

}; // class Point

#endif // POINT_H_

Point.h

STYLE
TIP

CSE333, Spring 2023L10: C++ Constructor Insanity

Class Member Definitions (.cc file)

9

#include <cmath>

#include "Point.h"

Point::Point(const int x, const int y) {

x_ = x;

this->y_ = y; // "this->" is optional unless name conflicts

}

double Point::Distance(const Point& p) const {

// We can access p’s x_ and y_ variables either through the

// get_x(), get_y() accessor functions or the x_, y_ private

// member variables directly, since we’re in a member

// function of the same class.

double distance = (x_ - p.get_x()) * (x_ - p.get_x());

distance += (y_ - p.y_) * (y_ - p.y_);

return sqrt(distance);

}

void Point::SetLocation(const int x, const int y) {

x_ = x;

y_ = y;

}

Point.cc

CSE333, Spring 2023L10: C++ Constructor Insanity

Class Usage (.cc file)

10

#include <iostream>

#include <cstdlib>

#include "Point.h"

using namespace std;

int main(int argc, char** argv) {

Point p1(1, 2); // allocate a new Point on the Stack

Point p2(4, 6); // allocate a new Point on the Stack

cout << "p1 is: (" << p1.get_x() << ", ";

cout << p1.get_y() << ")" << endl;

cout << "p2 is: (" << p2.get_x() << ", ";

cout << p2.get_y() << ")" << endl;

cout << "dist : " << p1.Distance(p2) << endl;

return EXIT_SUCCESS;

}

usepoint.cc

CSE333, Spring 2023L10: C++ Constructor Insanity

Reading Assignment

❖ Read the sections in C++ Primer covering class
constructors, copy constructors, assignment
(operator=), and destructors

▪ Ignore “move semantics” for now

▪ The table of contents and index are your friends…

11

CSE333, Spring 2023L10: C++ Constructor Insanity

struct vs. class

❖ In C, a struct can only contain data fields

▪ No methods and all fields are always accessible

❖ In C++, struct and class are (nearly) the same!

▪ Both can have methods and member visibility
(public/private/protected)

▪ Minor difference: members are default public in a struct and
default private in a class

❖ Common style convention:
▪ Use struct for simple bundles of data

▪ Use class for abstractions with data + functions

12

STYLE
TIP

CSE333, Spring 2023L10: C++ Constructor Insanity

Memory Diagrams for Objects

❖ An object is an instance of a class that maintains its state
independent from other objects

▪ This state is the collection of its data members

▪ Conceptually, an object acts like a collection of data fields (plus
class metadata)

• Layout is not specified or guaranteed, unlike structs in C

❖ Drawn out as variables within variables:

13

class Point {

...

private:

int x_; // data member

int y_; // data member

}; // class Point

CSE333, Spring 2023L10: C++ Constructor Insanity

Lecture Outline

❖ Constructors

❖ Copy Constructors

❖ Assignment (next lecture)

❖ Destructors (next lecture)

14

CSE333, Spring 2023L10: C++ Constructor Insanity

Constructors

❖ A constructor (ctor) initializes a newly-instantiated object

▪ A class can have multiple constructors that differ in parameters

▪ A constructor must be invoked when creating a new instance of
an object – which one depends on how the object is instantiated

❖ Written with the class name as the method name:

▪ C++ will automatically create a synthesized default constructor if
you have no user-defined constructors

• Takes no arguments and calls the default ctor on all non-“plain old
data” (non-POD) member variables

• Synthesized default ctor will fail if you have non-initialized const or
reference data members

15

Point(const int x, const int y);

CSE333, Spring 2023L10: C++ Constructor Insanity

Synthesized Default Constructor Example

16

class SimplePoint {

public:

// no constructors declared!

int get_x() const { return x_; } // inline member function

int get_y() const { return y_; } // inline member function

double Distance(const SimplePoint& p) const;

void SetLocation(int x, int y);

private:

int x_; // data member

int y_; // data member

}; // class SimplePoint SimplePoint.h

#include "SimplePoint.h"

... // definitions for Distance() and SetLocation()

int main(int argc, char** argv) {

SimplePoint x; // invokes synthesized default constructor

return EXIT_SUCCESS;

}

SimplePoint.cc

CSE333, Spring 2023L10: C++ Constructor Insanity

Synthesized Default Constructor

❖ If you define any constructors, C++ assumes you have
defined all the ones you intend to be available and will
not add any others

17

#include "SimplePoint.h"

// defining a constructor with two arguments

SimplePoint::SimplePoint(const int x, const int y) {

x_ = x;

y_ = y;

}

void Foo() {

SimplePoint x; // compiler error: if you define any

// ctors, C++ will NOT synthesize a

// default constructor for you.

SimplePoint y(1, 2); // works: invokes the 2-int-arguments

// constructor

}

CSE333, Spring 2023L10: C++ Constructor Insanity

Multiple Constructors (overloading)

18

#include "SimplePoint.h"

// default constructor

SimplePoint::SimplePoint() {

x_ = 0;

y_ = 0;

}

// constructor with two arguments

SimplePoint::SimplePoint(const int x, const int y) {

x_ = x;

y_ = y;

}

void Foo() {

SimplePoint x; // invokes the default constructor

SimplePoint y(1, 2); // invokes the 2-int-arguments ctor

SimplePoint a[3]; // invokes the default ctor 3 times

}

CSE333, Spring 2023L10: C++ Constructor Insanity

Initialization Lists

❖ C++ lets you optionally declare an initialization list as part
of a constructor definition

▪ Initializes fields according to parameters in the list

▪ The following two are (nearly) identical:

19

// constructor with an initialization list

Point::Point(const int x, const int y) : x_(x), y_(y) {

std::cout << "Point constructed: (" << x_ << ",";

std::cout << y_<< ")" << std::endl;

}

Point::Point(const int x, const int y) {

x_ = x;

y_ = y;

std::cout << "Point constructed: (" << x_ << ",";

std::cout << y_<< ")" << std::endl;

}

CSE333, Spring 2023L10: C++ Constructor Insanity

Initialization vs. Construction

▪ Data members in initializer list are initialized in the order they are
defined in the class, not by the initialization list ordering (!)

• Data members that don’t appear in the initialization list are default
initialized/constructed before body is executed

▪ Initialization preferred to assignment to avoid extra steps

• Real code should never mix the two styles

20

class Point3D {

public:

// constructor with 3 int arguments

Point3D(const int x, const int y, const int z) : y_(y), x_(x) {

z_ = z;

}

private:

int x_, y_, z_; // data members

}; // class Point3D

First, initialization list is applied.

Next, constructor body is executed.

STYLE
TIP

CSE333, Spring 2023L10: C++ Constructor Insanity

Lecture Outline

❖ Constructors

❖ Copy Constructors

❖ Assignment (next lecture)

❖ Destructors (next lecture)

21

CSE333, Spring 2023L10: C++ Constructor Insanity

Copy Constructors

❖ C++ has the notion of a copy constructor (cctor)

▪ Used to create a new object as a copy of an existing object

22

Point::Point(const int x, const int y) : x_(x), y_(y) { }

// copy constructor

Point::Point(const Point& copyme) {

x_ = copyme.x_;

y_ = copyme.y_;

}

void Foo() {

Point x(1, 2); // invokes the 2-int-arguments constructor

Point y(x); // invokes the copy constructor

// could also be written as "Point y = x;"

}

▪ Initializer lists can also be used in copy constructors (preferred)

STYLE
TIP

CSE333, Spring 2023L10: C++ Constructor Insanity

Synthesized Copy Constructor

❖ If you don’t define your own copy constructor, C++ will
synthesize one for you

▪ It will do a shallow copy of all of the fields (i.e., member variables)
of your class

▪ Sometimes the right thing; sometimes the wrong thing

23

#include "SimplePoint.h"

... // definitions for Distance() and SetLocation()

int main(int argc, char** argv) {

SimplePoint x;

SimplePoint y(x); // invokes synthesized copy constructor

...

return EXIT_SUCCESS;

}

CSE333, Spring 2023L10: C++ Constructor Insanity

When Do Copies Happen?

❖ The copy constructor is invoked if:

▪ You initialize an object from
another object of the same
type:

▪ You pass a non-reference
object as a value parameter
to a function:

▪ You return a non-reference
object value from a function:

24

void Foo(Point x) { ... }

Point y; // default ctor

Foo(y); // copy ctor

Point x; // default ctor

Point y(x); // copy ctor

Point z = y; // copy ctor

Point Foo() {

Point y; // default ctor

return y; // copy ctor

}

CSE333, Spring 2023L10: C++ Constructor Insanity

Compiler Optimization

❖ The compiler sometimes uses a “return by value
optimization” or “move semantics” to eliminate
unnecessary copies

▪ Sometimes you might not see a constructor get invoked when you
might expect it

25

Point Foo() {

Point y; // default ctor

return y; // copy ctor? optimized?

}

int main(int argc, char** argv) {

Point x(1, 2); // two-ints-argument ctor

Point y = x; // copy ctor

Point z = Foo(); // copy ctor? optimized?

}

CSE333, Spring 2023L10: C++ Constructor Insanity

Extra Exercise #1

❖ Write a C++ program that:

▪ Has a class representing a 3-dimensional point

▪ Has the following methods:

• Return the inner product of two 3D points

• Return the distance between two 3D points

• Accessors and mutators for the x, y, and z coordinates

37

CSE333, Spring 2023L10: C++ Constructor Insanity

Extra Exercise #2

❖ Write a C++ program that:

▪ Has a class representing a 3-dimensional box

• Use your Extra Exercise #1 class to store the coordinates of the
vertices that define the box

• Assume the box has right-angles only and its faces are parallel to the
axes, so you only need 2 vertices to define it

▪ Has the following methods:

• Test if one box is inside another box

• Return the volume of a box

• Handles <<, =, and a copy constructor

• Uses const in all the right places

38

