
CSE333, Spring 2023L07: System Calls & Makefiles

1

pollev.com/cse333sp

About how long did Exercise 3 take you?

A. [0, 2) hours
B. [2, 4) hours
C. [4, 6) hours
D. [6, 8) hours
E. 8+ Hours
F. I didn’t submit / I prefer not to say

CSE333, Spring 2023L07: System Calls & Makefiles

System Calls, Makefiles
CSE 333 Spring 2023

Instructor: Chris Thachuk

Teaching Assistants:

Byron Jin CJ Reith

Deeksha Vatwani Edward Zhang

Humza Lala Lahari Nidadavolu

Noa Ferman Saket Gollapudi

Seulchan (Paul) Han Timmy Yang

Tim Mandzyuk Wui Wu

CSE333, Spring 2023L07: System Calls & Makefiles

Relevant Course Information

3

❖ Homework 1 due Thursday night (4/13)

▪ Clean up “to do” comments, but leave “STEP #” markers

▪ Graded not just on correctness, also code quality

▪ OH get crowded – come prepared to describe your incorrect
behavior and what you think the issue is and what you’ve tried

▪ Late days: don’t tag hw1-final until you are really ready

• Please use them if you need to!

❖ Homework 2 (and next exercise) released today

▪ Partner declaration form and matching form will be released after
the spec is released

CSE333, Spring 2023L07: System Calls & Makefiles

Cont’d from previous lecture

❖ File I/O with the C standard library

❖ C Stream Buffering

❖ POSIX Lower-Level I/O

4

CSE333, Spring 2023L07: System Calls & Makefiles

From C to POSIX

❖ Most UNIX-en support a common set of lower-level file
access APIs: POSIX – Portable Operating System Interface
▪ open(), read(), write(), close(), lseek()

• Similar in spirit to their f*() counterparts from the C std lib

• Lower-level and unbuffered compared to their counterparts

• Also less convenient

▪ You will have to use these to read file system directories and for
network I/O, so we might as well learn them now

• These are functionalities that C stdio doesn’t provide!

5

CSE333, Spring 2023L07: System Calls & Makefiles

open/close

❖ To open a file:
▪ Pass in the filename and access mode (similar to fopen)

▪ Get back a “file descriptor”

• Similar to FILE* from fopen, but is just an int

• -1 indicates an error

❖ Open descriptors: 0 (stdin), 1 (stdout), 2 (stderr)
6

#include <fcntl.h> // for open()

#include <unistd.h> // for close()

...

int fd = open("foo.txt", O_RDONLY);

if (fd == -1) {

perror("open failed");

exit(EXIT_FAILURE);

}

...

close(fd);

CSE333, Spring 2023L07: System Calls & Makefiles

Reading from a File

❖ ssize_t read(int fd, void* buf, size_t count);

▪ Advances forward in the file by number
of bytes read

▪ Returns the number of bytes read

• Might be fewer bytes than you requested (!!!)

• Returns 0 if you’re already at the end-of-file

• Returns -1 on error (and sets errno)

▪ There are some surprising error modes (check errno)

• EBADF: bad file descriptor

• EFAULT: output buffer is not a valid address

• EINTR: read was interrupted, please try again (ARGH!!!! 😤😠)

• And many others…

7

ssize_t read(int fd, void* buf, size_t count);

CSE333, Spring 2023L07: System Calls & Makefiles

One method to read() 𝑛 bytes

9

int fd = open(filename, O_RDONLY);

char* buf = ...; // buffer of appropriate size

int bytes_left = n;

int result;

while (bytes_left > 0) {

result = read(fd, buf + (n - bytes_left), bytes_left);

if (result == -1) {

if (errno != EINTR) {

// a real error happened, so return an error result

}

// EINTR happened, so do nothing and try again

continue;

} else if (result == 0) {

// EOF reached, so stop reading

break;

}

bytes_left -= result;

}

close(fd);

readN.c

CSE333, Spring 2023L07: System Calls & Makefiles

Other Low-Level Functions

❖ Read man pages to learn about:
▪ write() – write data

• #include <unistd.h>

▪ fsync() – flush data to the underlying device

• #include <unistd.h>

▪ opendir(), readdir(), closedir() – deal with directory
listings

• Make sure you read the section 3 version (e.g., man 3 opendir)

• #include <dirent.h>

❖ A useful shortcut sheet (from CMU):
http://www.cs.cmu.edu/~guna/15-123S11/Lectures/Lecture24.pdf

10

http://www.cs.cmu.edu/~guna/15-123S11/Lectures/Lecture24.pdf

CSE333, Spring 2023L07: System Calls & Makefiles

C Standard Library vs. POSIX

❖ C standard library implements a subset of POSIX

▪ e.g., POSIX provides directory manipulation that C std lib doesn’t

❖ C standard library implements automatic buffering

❖ C standard library has a nicer API

❖ The two are similar but C standard library builds on top of
POSIX

▪ Choice between high-level and low-level

▪ Will depend on the requirements of your application

▪ You will explore this relationship in Exercise 4!

11

CSE333, Spring 2023L07: System Calls & Makefiles

Lecture Outline

❖ System Calls (High-Level View)

❖ Make and Build Tools

❖ Makefile Basics

❖ C History (for reading, not covered in lecture)

12

CSE333, Spring 2023L07: System Calls & Makefiles

Remember This Picture?

13

C application

C standard
library (glibc)

C++ STL/boost/
standard library

C++ application Java application

JRE

CPU memory storage network
GPU clock audio radio peripherals

HW/SW interface
(x86 + devices)

OS / app interface
(system calls)

operating system

hardware

A brief
diversion...

CSE333, Spring 2023L07: System Calls & Makefiles

What’s an OS?

❖ Software that:

▪ Directly interacts with the hardware

• OS is trusted to do so; user-level programs are not

• OS must be ported to new hardware; user-level programs are
portable

▪ Manages (allocates, schedules, protects) hardware resources

• Decides which programs can access which files, memory locations,
pixels on the screen, etc. and when

▪ Abstracts away messy hardware devices

• Provides high-level, convenient, portable abstractions
(e.g., files, disk blocks)

14

CSE333, Spring 2023L07: System Calls & Makefiles

OS: Abstraction Provider

❖ The OS is the “layer below”

▪ A module that your program can call (with system calls)

▪ Provides a powerful OS API – POSIX, Windows, etc.

15

a process running
your program

OS

OS
API

fi
le

 s
ys

te
m

n
et

w
o

rk
 s

ta
ck

vi
rt

u
al

 m
em

o
ry

p
ro

ce
ss

 m
gm

t.

…
 e

tc
…

File System
• open(), read(), write(), close(), …

Network Stack
• connect(), listen(), read(), write(), ...

Virtual Memory
• brk(), shm_open(), …

Process Management
• fork(), wait(), nice(), …

CSE333, Spring 2023L07: System Calls & Makefiles

OS: Protection System

❖ OS isolates process from each other
▪ But permits controlled sharing between them

• Through shared name spaces (e.g., file names)

❖ OS isolates itself from processes
▪ Must prevent processes from accessing the

hardware directly

❖ OS is allowed to access the hardware
▪ User-level processes run with the CPU

(processor) in unprivileged mode

▪ The OS runs with the CPU in privileged mode

▪ User-level processes invoke system calls to
safely enter the OS

16

OS
(trusted)

HW (trusted)

P
ro

ce
ss

 A
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 B
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 C
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 D
(t

ru
st

ed
)

There are special cases

where “super-user”

permissions granted

CSE333, Spring 2023L07: System Calls & Makefiles

System Call Analogy

❖ The OS is a bank manager overseeing
safety deposit boxes in the vault

▪ Is the only one allowed in the vault and has the keys
to the safety deposit boxes

❖ If a client wants to access a deposit box (i.e., add or
remove items), they must request that the bank manager
do it for them

▪ Takes time to locate and travel to box and find the right key

▪ Client must wait in the lobby while the bank manager accesses
the box – prevents messing with requested box or other boxes

▪ Takes time to put box away, return from vault, and let client know
that request was fulfilled

17

CSE333, Spring 2023L07: System Calls & Makefiles

System Calls Simplified Overview

❖ The operating system (OS) is a super complicated
“program overseer” program for the computer

▪ The only software that is directly trusted with hardware access

❖ If a user process wants to access an OS feature, they must
invoke a system call

▪ A system call involves context switching into the OS/kernel, which
has some overhead

▪ The OS will handle hardware/special functionality directly (in
privileged mode) while user processes wait and don’t touch
anything themselves

▪ OS will eventually finish, return result to user process, and context
switch back

18

CSE333, Spring 2023L07: System Calls & Makefiles

System Call Trace (high-level view)

19

OS
(trusted)

HW (trusted)

P
ro

ce
ss

 A
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 B
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 C
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 D
(t

ru
st

ed
)

A CPU (thread of
execution) is running user-

level code in Process A;
the CPU is set to

unprivileged mode.

CSE333, Spring 2023L07: System Calls & Makefiles

OS
(trusted)

HW (trusted)

P
ro

ce
ss

 A
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 B
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 C
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 D
(t

ru
st

ed
)

System Call Trace (high-level view)

20

Code in Process A invokes
a system call; the

hardware then sets the
CPU to privileged mode
and traps into the OS,

which invokes the
appropriate system call

handler.

sy
st

em
 c

al
l

CSE333, Spring 2023L07: System Calls & Makefiles

OS
(trusted)

HW (trusted)

P
ro

ce
ss

 A
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 B
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 C
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 D
(t

ru
st

ed
)

System Call Trace (high-level view)

21

Because the CPU
executing the thread
that’s in the OS is in

privileged mode, it is able
to use privileged

instructions that interact
directly with hardware

devices like disks.

CSE333, Spring 2023L07: System Calls & Makefiles

OS
(trusted)

HW (trusted)

P
ro

ce
ss

 A
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 B
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 C
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 D
(t

ru
st

ed
)

System Call Trace (high-level view)

22

sy
st

em
 c

al
l r

et
u

rn

Once the OS has finished
servicing the system call,

which might involve long waits
as it interacts with HW, it:

(1) Sets the CPU back to
unprivileged mode and

(2) Returns out of the system
call back to the user-level code

in Process A.

CSE333, Spring 2023L07: System Calls & Makefiles

OS
(trusted)

HW (trusted)

P
ro

ce
ss

 A
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 B
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 C
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 D
(t

ru
st

ed
)

System Call Trace (high-level view)

23

The process continues
executing whatever

code is next after the
system call invocation.

Useful reference:
CSPP § 8.1–8.3
(the 351 book)

CSE333, Spring 2023L07: System Calls & Makefiles

“Library calls” on x86/Linux

❖ A more accurate picture:

▪ Consider a typical Linux process

▪ Its thread of execution can be in one
of several places:

• In your program’s code

• In glibc, a shared library containing
the C standard library, POSIX,
support, and more

• In the Linux architecture-independent
code

• In Linux x86-64 code

24

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

Linux
system calls

Linux kernel

Your program

CSE333, Spring 2023L07: System Calls & Makefiles

“Library calls” on x86/Linux: Option 1

❖ Some routines your program
invokes may be entirely handled
by glibc without involving the
kernel

▪ e.g., strcmp() from stdio.h

▪ There is some initial overhead when
invoking functions in dynamically
linked libraries (during loading)

• But after symbols are resolved,
invoking glibc routines is basically
as fast as a function call within your
program itself!

25

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

Linux kernel

Your program

CSE333, Spring 2023L07: System Calls & Makefiles

“Library calls” on x86/Linux: Option 2

❖ Some routines may be handled
by glibc, but they in turn
invoke Linux system calls

▪ e.g., POSIX wrappers around Linux
syscalls

• POSIX readdir() invokes the
underlying Linux readdir()

▪ e.g., C stdio functions that read
and write from files

• fopen(), fclose(), fprintf()
invoke underlying Linux open(),
close(), write(), etc.

26

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

Linux kernel

Your program

CSE333, Spring 2023L07: System Calls & Makefiles

“Library calls” on x86/Linux: Option 3

❖ Your program can choose to
directly invoke Linux system calls
as well

▪ Nothing is forcing you to link with
glibc and use it

▪ But relying on directly-invoked Linux
system calls may make your
program less portable across UNIX
varieties

27

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

Linux kernel

Your program

CSE333, Spring 2023L07: System Calls & Makefiles

strace

❖ A useful Linux utility that shows the sequence of system
calls that a process makes:

28

bash$ strace ls 2>&1 | less

execve("/usr/bin/ls", ["ls"], [/* 41 vars */]) = 0

brk(NULL) = 0x15aa000

mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =

0x7f03bb741000

access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or directory)

open("/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3

fstat(3, {st_mode=S_IFREG|0644, st_size=126570, ...}) = 0

mmap(NULL, 126570, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7f03bb722000

close(3) = 0

open("/lib64/libselinux.so.1", O_RDONLY|O_CLOEXEC) = 3

read(3, "\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0\300j\0\0\0\0\0\0"...,

832) = 832

fstat(3, {st_mode=S_IFREG|0755, st_size=155744, ...}) = 0

mmap(NULL, 2255216, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) =

0x7f03bb2fa000

mprotect(0x7f03bb31e000, 2093056, PROT_NONE) = 0

mmap(0x7f03bb51d000, 8192, PROT_READ|PROT_WRITE,

MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x23000) = 0x7f03bb51d000

... etc ...

CSE333, Spring 2023L07: System Calls & Makefiles

Lecture Outline

❖ System Calls (High-Level View)

❖ Make and Build Tools

❖ Makefile Basics

❖ C History (for reading, not covered in lecture)

29

CSE333, Spring 2023L07: System Calls & Makefiles

make

❖ make is a classic program for controlling what gets
(re)compiled and how
▪ Many other such programs exist (e.g., ant, maven, IDE “projects”)

❖ make has tons of fancy features, but only two basic ideas:

1) Scripts for executing commands

2) Dependencies for avoiding unnecessary work

❖ To avoid “just teaching make features” (boring and
narrow), let’s focus more on the concepts…

30

CSE333, Spring 2023L07: System Calls & Makefiles

Building Software

❖ Programmers spend a lot of time “building”

▪ Creating programs from source code

▪ Both programs that they write and other people write

31

https://xkcd.com/303/

https://xkcd.com/303/

CSE333, Spring 2023L07: System Calls & Makefiles

Building Software

❖ Programmers spend a lot of time “building”

▪ Creating programs from source code

▪ Both programs that they write and other people write

❖ Programmers like to automate repetitive tasks

▪ Repetitive: gcc -Wall -g -std=c17 -o widget foo.c bar.c baz.c

• Retype this every time: 😭

• Use up-arrow or history: 😐 (still retype after logout)

• Have an alias or bash script: 🙂

• Have a Makefile: 😊 (you’re ahead of us)

32

CSE333, Spring 2023L07: System Calls & Makefiles

“Real” Build Process

❖ On larger projects, you can’t or don’t want to have one big (set
of) command(s) that are all run every time you change
anything. To do things “smarter,” consider:
1) It could be worse: If gcc didn’t combine steps for you, you’d need to

preprocess, compile, and link on your own (along with anything you
used to generate the C files)

2) Source files could have multiple outputs (e.g., javadoc). You may
have to type out the source file name(s) multiple times

3) You don’t want to have to document the build logic when you
distribute source code; make it relatively simple for others to build

4) You don’t want to recompile everything every time you change
something (especially if you have 105-107 files of source code)

❖ A script can handle 1-3 (use a variable for filenames for 2), but
4 is trickier

33

CSE333, Spring 2023L07: System Calls & Makefiles

Recompilation Management

❖ The “theory” behind avoiding unnecessary compilation is
a dependency dag (directed, acyclic graph)

❖ To create a target 𝑡, you need sources 𝑠1, 𝑠2, … , 𝑠𝑛 and a
command 𝑐 that directly or indirectly uses the sources

▪ It 𝑡 is newer than every source (file-modification times), assume
there is no reason to rebuild it

▪ Recursive building: if some source 𝑠𝑖 is itself a target for some
other sources, see if it needs to be rebuilt…

▪ Cycles “make no sense”!

34

CSE333, Spring 2023L07: System Calls & Makefiles

Theory Applied to C

❖ Compiling a .c creates a .o – the .o depends on the .c
and all included files (.h, recursively/transitively)

35

Source files

Object files

foo.c bar.cfoo.h

foo.o bar.olibZ.a

bar

Statically-linked
libraries

Executable

CSE333, Spring 2023L07: System Calls & Makefiles

Theory Applied to C

❖ Compiling a .c creates a .o – the .o depends on the .c
and all included files (.h, recursively/transitively)

❖ An archive (library, .a) depends on included .o files

36

Source files

Object files

foo.c bar.cfoo.h

foo.o bar.olibZ.a

bar

Statically-linked
libraries

Executable

CSE333, Spring 2023L07: System Calls & Makefiles

Theory Applied to C

❖ Compiling a .c creates a .o – the .o depends on the .c
and all included files (.h, recursively/transitively)

❖ An archive (library, .a) depends on included .o files

❖ Creating an executable (“linking”) depends on .o files and
archives
▪ Archives linked by -L<path> -l<name>

(e.g., -L. -lfoo to get libfoo.a from current directory)

37

Source files

Object files

foo.c bar.cfoo.h

foo.o bar.olibZ.a

bar

Statically-linked
libraries

Executable

CSE333, Spring 2023L07: System Calls & Makefiles

Theory Applied to C

❖ If one .c file changes, just need to recreate one .o file,
maybe a library, and re-link

❖ If a .h file changes, may need to rebuild more

❖ Many more possibilities!

38

Source files

Object files

foo.c bar.cfoo.h

foo.o bar.olibZ.a

bar

Statically-linked
libraries

Executable

CSE333, Spring 2023L07: System Calls & Makefiles

Lecture Outline

❖ System Calls (High-Level View)

❖ Make and Build Tools

❖ Makefile Basics

❖ C History (for reading, not covered in lecture)

39

CSE333, Spring 2023L07: System Calls & Makefiles

make Basics

❖ A makefile contains a bunch of triples:

▪ Colon after target is required

▪ Command lines must start with a TAB, NOT SPACES

▪ Multiple commands for same target are executed in order

• Can split commands over multiple lines by ending lines with ‘\’

❖ Example:

40

foo.o: foo.c foo.h bar.h

gcc -Wall -o foo.o -c foo.c

target: sources

command← Tab →

CSE333, Spring 2023L07: System Calls & Makefiles

Using make

❖ Defaults:
▪ If no -f specified, use a file named Makefile in current dir

▪ If no target specified, will use the first one in the file

▪ Will interpret commands in your default shell

• Set SHELL variable in makefile to ensure

❖ Target execution:

▪ Check each source in the source list:

• If the source is a target in the makefile, then process it recursively

• If some source does not exist, then error

• If any source is newer than the target (or target does not exist), run
command (presumably to update the target)

41

$ make -f <makefileName> target

CSE333, Spring 2023L07: System Calls & Makefiles

“Phony” Targets

❖ A make target whose command does not create a file of
the target’s name (i.e., a “recipe”)

▪ As long as target file doesn’t exist, the command(s) will be
executed because the target must be “remade”

❖ e.g., target clean is a convention to remove generated
files to “start over” from just the source

❖ e.g., target all is a convention to build all “final
products” in the makefile

▪ Lists all of the “final products” as sources

42

clean:

rm foo.o bar.o baz.o widget *~

CSE333, Spring 2023L07: System Calls & Makefiles

“all” Example

43

all: prog B.class someLib.a

notice no commands this time

prog: foo.o bar.o main.o

gcc –o prog foo.o bar.o main.o

B.class: B.java

javac B.java

someLib.a: foo.o baz.o

ar r foo.o baz.o

foo.o: foo.c foo.h header1.h header2.h

gcc -c -Wall foo.c

similar targets for bar.o, main.o, baz.o, etc...

1

2

3

4

5 6

7 8

CSE333, Spring 2023L07: System Calls & Makefiles

make Variables

❖ You can define variables in a makefile:

▪ All values are strings of text, no “types”

▪ Variable names are case-sensitive and can’t contain ‘:’, ‘#’, ‘=’, or
whitespace

❖ Example:

❖ Advantages:

▪ Easy to change things (especially in multiple commands)

• It’s common to use variables to hold lists of filenames

▪ Can also specify/overwrite variables on the command line:
(e.g., make CC=clang CFLAGS=-g) 44

CC = gcc

CFLAGS = -Wall -std=c17

OBJFILES = foo.o bar.o baz.o

widget: $(OBJFILES)

$(CC) $(CFLAGS) -o widget $(OBJFILES)

CSE333, Spring 2023L07: System Calls & Makefiles

Makefile Writing Tips

❖ When creating a Makefile, first draw the dependencies!!!!

❖ C Dependency Rules:
▪ .c and .h files are never targets, only sources.

▪ Each .c file will be compiled into a corresponding .o file

• Header files will be implicitly used via #include

▪ Executables will typically be built from one or more .o file

❖ Good Conventions:
▪ Include a clean rule

▪ If you have more than one “final target,” include an all rule

▪ The first/top target should be your singular “final target” or all

45

STYLE
TIP

STYLE
TIP

CSE333, Spring 2023L07: System Calls & Makefiles

Writing a Makefile Example

❖ “talk” program (find files on web with lecture slides)

46

speak.cspeak.h shout.cshout.hmain.c

#include "speak.h"

#include "shout.h"

int main(int argc, char** argv) {…

#include "speak.h"

...

#include "speak.h"

#include "shout.h"

...

main.c

speak.c

shout.c

CSE333, Spring 2023L07: System Calls & Makefiles

Writing a Makefile Example

❖ “talk” program (find files on web with lecture slides)

47

speak.cspeak.h shout.cshout.hmain.c

speak.o shout.omain.o

talk

CSE333, Spring 2023L07: System Calls & Makefiles

Revenge of the Funny Characters

❖ Special variables:
▪ $@ for target name

▪ $^ for all sources

▪ $< for left-most source

▪ Lots more! – see the documentation

❖ Examples:

48

CC and CFLAGS defined above

widget: foo.o bar.o

$(CC) $(CFLAGS) -o $@ $^

foo.o: foo.c foo.h bar.h

$(CC) $(CFLAGS) -c $<

CSE333, Spring 2023L07: System Calls & Makefiles

And more…

❖ There are a lot of “built-in” rules – see documentation

❖ There are “suffix” rules and “pattern” rules

▪ Example:

❖ Remember that you can put any shell command – even
whole scripts!

❖ You can repeat target names to add more dependencies

❖ Often this stuff is more useful for reading makefiles than
writing your own (until some day…)

49

%.class: %.java

javac $< # we need the $< here

CSE333, Spring 2023L07: System Calls & Makefiles

Lecture Outline

❖ System Calls (High-Level View)

❖ Make and Build Tools

❖ Makefile Basics

❖ C History (for reading, not covered in lecture)

50

CSE333, Spring 2023L07: System Calls & Makefiles

Development of the C Language

❖ Created in 1972

▪ BCPL → B → C

▪ Designed specifically as a system programming language for Unix

• Unix was rewritten entirely in C (Version 4 in 1973)

❖ “Standardized” in 1978 with release of K&R Ed. 1

▪ From initial creation, developed
in terms of portability and type safety

❖ Formal standardization via American National
Standards Institute (ANSI) in 1989 and International
Organziation for Standardization (ISO) in 1990

▪ Non-portable portion of the Unix C library was the basis for the
POSIX standard via IEEE

52

CSE333, Spring 2023L07: System Calls & Makefiles

Development of the C Language

❖ Development Context:

▪ Developed for the PDP-7/PDP-11

• Very limited memory available for program

▪ Improvements over B: data typing, performance, byte
addressibility

▪ Developed in the context of operating system innovations
(Multics, Unix)

• “Particularly oriented towards system programming, are small and
compactly described, and are amenable to translation by simple
compilers.”

• “By design, C provides constructs that map efficiently to typical
machine instructions. It has found lasting use in applications
previously coded in assembly language.”

❖ Who used computers and programming at the time?
53

CSE333, Spring 2023L07: System Calls & Makefiles

Development of the C Language

❖ Credits:

▪ Dennis Ritchie designed C

▪ Ken Thompson designed B and, with Ritchie, were the primary
architects of UNIX (in assembly)

▪ Brian Kernighan helped Ritchie write K&R, the first
“standardization” of the C language

❖ “The development of the C language” (https://dl.acm.org/doi/10.1145/155360.155580)

54

Dennis
Ritchie

Ken
Thompson

Brian
Kernighan

https://dl.acm.org/doi/10.1145/155360.155580

CSE333, Spring 2023L07: System Calls & Makefiles

Principles of C

❖ Some commonly-held contemporary views:

▪ “Since C is relatively small, it can be described
in small space and learned quickly.”

▪ “Shows what’s really happening.”

▪ “Close to the machine/hardware.”

▪ “Only the bare essentials.”

▪ “No one to help you.”

▪ “You’re on your own.”

▪ “I know what I’m doing, get out of my way.”

55

