
CSE333, Spring 2023L06: File I/O

File I/O: Cstdio, Buffering, POSIX
CSE 333 Spring 2023

Instructor: Chris Thachuk

Teaching Assistants:

Byron Jin CJ Reith

Deeksha Vatwani Edward Zhang

Humza Lala Lahari Nidadavolu

Noa Ferman Saket Gollapudi

Seulchan (Paul) Han Timmy Yang

Tim Mandzyuk Wui Wu

CSE333, Spring 2023L06: File I/O

Relevant Course Information

❖ Homework 1 due next Thursday night (4/13)

▪ Clean up “to do” comments, but leave “STEP #” markers

▪ Graded not just on correctness, also code quality

▪ OH get crowded – come prepared to describe your incorrect
behavior and what you think the issue is and what you’ve tried

▪ Late days: don’t tag hw1-final until you are really ready

• Please use them if you need to!

❖ Homework 2 (and next exercise) released soon

▪ Partner declaration form and matching form will be released after
the spec is released

3

CSE333, Spring 2023L06: File I/O

Cont’d from previous lecture

❖ C Preprocessor

❖ Visibility of Symbols
▪ extern, static

4

CSE333, Spring 2023L06: File I/O

Namespace Problem

❖ If we define a global variable named “counter” in one C
file, is it visible in a different C file in the same program?

▪ Yes, if you use external linkage

• The name “counter” refers to the same variable in both files

• The variable is defined in one file and declared in the other(s)

• When the program is linked, the symbol resolves to one location

▪ No, if you use internal linkage

• The name “counter” refers to a different variable in each file

• The variable must be defined in each file

• When the program is linked, the symbols resolve to two locations

5

CSE333, Spring 2023L06: File I/O

External Linkage

❖ extern makes a declaration of something externally-
visible
▪ Works slightly differently for variables and functions…

6

#include <stdio.h>

#include <stdlib.h>

// A global variable, defined and

// initialized here in foo.c.

// It has external linkage by

// default.

int counter = 1;

int main(int argc, char** argv) {

printf("%d\n", counter);

Bar();

printf("%d\n", counter);

return EXIT_SUCCESS;

}

foo.c

#include <stdio.h>

// "counter" is defined and

// initialized in foo.c.

// Here, we declare it, and

// specify external linkage

// by using the extern specifier.

extern int counter;

void Bar() {

counter++;

printf("(Bar): counter = %d\n",

counter);

}

bar.c

CSE333, Spring 2023L06: File I/O

Internal Linkage

❖ static (in the global context) restricts a definition to
visibility within that file

7

#include <stdio.h>

#include <stdlib.h>

// A global variable, defined and

// initialized here in foo.c.

// We force internal linkage by

// using the static specifier.

static int counter = 1;

int main(int argc, char** argv) {

printf("%d\n", counter);

Bar();

printf("%d\n", counter);

return EXIT_SUCCESS;

}

foo.c

#include <stdio.h>

// A global variable, defined and

// initialized here in bar.c.

// We force internal linkage by

// using the static specifier.

static int counter = 100;

void Bar() {

counter++;

printf("(Bar): counter = %d\n",

counter);

}

bar.c

CSE333, Spring 2023L06: File I/O

Function Visibility

8

#include <stdio.h>

#include <stdlib.h>

extern int Bar(int x); // "extern" is default, usually omit

int main(int argc, char** argv) {

printf("%d\n", Bar(5));

return EXIT_SUCCESS;

}main.c

// By using the static specifier, we are indicating

// that Foo() should have internal linkage. Other

// .c files cannot see or invoke Foo().

static int Foo(int x) {

return x*3 + 1;

}

// Bar is "extern" by default. Thus, other .c files

// could declare our Bar() and invoke it.

int Bar(int x) {

return 2*Foo(x);

}bar.c

CSE333, Spring 2023L06: File I/O

Linkage Issues

❖ Every global (variables and functions) is extern by
default
▪ Unless you add the static specifier, if some other module uses

the same name, you’ll end up with a collision!

• Best case: compiler (or linker) error

• Worst case: stomp all over each other

❖ It’s good practice to:
▪ Use static to “defend” your globals

• Hide your private stuff!

▪ Place external declarations in a module’s header file

• Header is the public specification

9

STYLE
TIP

CSE333, Spring 2023L06: File I/O

Static Confusion…

❖ C has a different use for the word “static”: to create a
persistent local variable

▪ The storage for that variable is allocated when the program loads,
in either the .data or .bss segment

▪ Retains its value across multiple function invocations

10

void Foo() {

static int count = 1;

printf("Foo has been called %d times\n", count++);

}

void Bar() {

int count = 1;

printf("Bar has been called %d times\n", count++);

}

int main(int argc, char** argv) {

Foo(); Foo(); Bar(); Bar(); return EXIT_SUCCESS;

}static_extent.c

CSE333, Spring 2023L06: File I/O

Additional C Topics

❖ Teach yourself!

▪ man pages are your friend!

▪ String library functions in the C standard library

• #include <string.h>

– strlen(), strcpy(), strdup(), strcat(), strcmp(), strchr(), strstr(), …

• #include <stdlib.h> or #include <stdio.h>

– atoi(), atof(), sprint(), sscanf()

▪ How to declare, define, and use a function that accepts a variable-
number of arguments (varargs)

▪ unions and what they are good for

▪ enums and what they are good for

▪ Pre- and post-increment/decrement

▪ Harder: the meaning of the “volatile” storage class

11

CSE333, Spring 2023L06: File I/O

Lecture Outline

❖ File I/O with the C standard library

❖ C Stream Buffering

❖ POSIX Lower-Level I/O

12

CSE333, Spring 2023L06: File I/O

File I/O

❖ We’ll start by using C’s standard library
▪ These functions are part of glibc on Linux

▪ They are implemented using Linux system calls (POSIX)

❖ C’s stdio defines the notion of a stream

▪ A sequence of characters that flows to and from a device

• Can be either text or binary; Linux does not distinguish

▪ Is buffered by default; libc reads ahead of your program

▪ Three streams provided by default: stdin, stdout, stderr

• You can open additional streams to read and write to files

▪ C streams are manipulated with a FILE* pointer, which is
defined in stdio.h

13

CSE333, Spring 2023L06: File I/O

C Stream Functions (1 of 2)

❖ Some stream functions (complete list in stdio.h):

▪ FILE* fopen(filename, mode);

• Opens a stream to the specified file in specified file access mode

▪ int fclose(stream);

• Closes the specified stream (and file)

▪ int fprintf(stream, format, ...);

• Writes a formatted C string

– printf(...); is equivalent to fprintf(stdout, ...);

▪ int fscanf(stream, format, ...);

• Reads data and stores data matching the format string

14

FILE* fopen(filename, mode);

int fclose(stream);

int fprintf(stream, format, ...);

int fscanf(stream, format, ...);

CSE333, Spring 2023L06: File I/O

C Stream Functions (2 of 2)

❖ Some stream functions (complete list in stdio.h):

▪ FILE* fopen(filename, mode);

• Opens a stream to the specified file in specified file access mode

▪ int fclose(stream);

• Closes the specified stream (and file)

▪ int fprintf(stream, format, ...);

• Writes an array of count elements of size bytes from ptr to stream

▪ int fscanf(stream, format, ...);

• Reads an array of count elements of size bytes from stream to ptr

15

FILE* fopen(filename, mode);

int fclose(stream);

size_t fwrite(ptr, size, count, stream);

size_t fread(ptr, size, count, stream);

CSE333, Spring 2023L06: File I/O

C Stream Error Checking/Handling

❖ Some error functions (complete list in stdio.h):

▪ int ferror(stream);

• Checks if the error indicator associated with the specified stream is
set

▪ void clearerr(stream);

• Resets error and EOF indicators for the specified stream

▪ void perror(message);

• Prints message followed by an error message related to errno to
stderr

16

int ferror(stream);

int clearerr(stream);

void perror(message);

CSE333, Spring 2023L06: File I/O

C Streams Example

17

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#define READBUFSIZE 128

int main(int argc, char** argv) {

FILE* fin;

FILE* fout;

char readbuf[READBUFSIZE];

size_t readlen;

if (argc != 3) {

fprintf(stderr, "usage: ./cp_example infile outfile\n");

return EXIT_FAILURE; // defined in stdlib.h

}

// Open the input file

fin = fopen(argv[1], "rb"); // "rb" -> read, binary mode

if (fin == NULL) {

perror("fopen for read failed");

return EXIT_FAILURE;

}

... // next slide’s code

cp_example.c

CSE333, Spring 2023L06: File I/O

C Streams Example

18

int main(int argc, char** argv) {

... // previous slide’s code

// Open the output file

fout = fopen(argv[2], "wb"); // "wb" -> write, binary mode

if (fout == NULL) {

perror("fopen for write failed");

fclose(fin);

return EXIT_FAILURE;

}

// Read from the file, write to fout

while ((readlen = fread(readbuf, 1, READBUFSIZE, fin)) > 0) {

// Test to see if we encountered an error while reading

if (ferror(fin)) {

perror("fread failed");

fclose(fin);

fclose(fout);

return EXIT_FAILURE;

}

... // next slide’s code

}

cp_example.c

CSE333, Spring 2023L06: File I/O

C Streams Example

19

int main(int argc, char** argv) {

... // two slides ago’s code

... // previous slide’s code

if (fwrite(readbuf, 1, readlen, fout) < readlen) {

perror("fwrite failed");

fclose(fin);

fclose(fout);

return EXIT_FAILURE;

}

}

fclose(fin);

fclose(fout);

return EXIT_SUCCESS;

}

cp_example.c

CSE333, Spring 2023L06: File I/O

Lecture Outline

❖ File I/O with the C standard library

❖ C Stream Buffering

❖ POSIX Lower-Level I/O

20

CSE333, Spring 2023L06: File I/O

Buffering

❖ By default, stdio uses buffering for streams:

▪ Data written by fwrite() is copied into a buffer allocated by
stdio inside your process’ address space

▪ As some point, the buffer will be “drained” into the destination:

• When you explicitly call fflush() on the stream

• When the buffer size is exceeded (often 1024 or 4096 bytes)

• For stdout to console, when a newline is written (“line buffered”) or
when some other function tries to read from the console

• When you call fclose() on the stream

• When your process exits gracefully (exit() or return from
main())

21

CSE333, Spring 2023L06: File I/O

Buffering Example

22

int main(int argc, char** argv) {

FILE* fout = fopen("test.txt", "wb");

// write "hi" one char at a time

if (fwrite("h", sizeof(char), 1, fout) < 1) {

perror("fwrite failed");

fclose(fout);

return EXIT_FAILURE;

}

if (fwrite("i", sizeof(char), 1, fout) < 1) {

perror("fwrite failed");

fclose(fout);

return EXIT_FAILURE;

}

fclose(fout);

return EXIT_SUCCESS;

}

C stdio buffer

test.txt (disk)

⋯

buffered_hi.c

'h' 'i'

'h' 'i'

CSE333, Spring 2023L06: File I/O

No Buffering Example

23

int main(int argc, char** argv) {

FILE* fout = fopen("test.txt", "wb");

setbuf(fout, NULL); // turn off buffering

// write "hi" one char at a time

if (fwrite("h", sizeof(char), 1, fout) < 1) {

perror("fwrite failed");

fclose(fout);

return EXIT_FAILURE;

}

if (fwrite("i", sizeof(char), 1, fout) < 1) {

perror("fwrite failed");

fclose(fout);

return EXIT_FAILURE;

}

fclose(fout);

return EXIT_SUCCESS;

}

C stdio buffer

test.txt (disk)

unbuffered_hi.c

⋯

'h' 'i'

CSE333, Spring 2023L06: File I/O

Why Buffer?

❖ Performance – avoid disk accesses

▪ Group many small writes
into a single larger write

▪ Disk Latency = 😱😱😱
(Jeff Dean from LADIS ’09)

❖ Convenience – nicer API
▪ We’ll compare C’s fread() with POSIX’s read()

24

CSE333, Spring 2023L06: File I/O

Why NOT Buffer?

❖ Reliability – the buffer needs to be flushed

▪ Loss of computer power = loss of data

▪ “Completion” of a write (i.e., return from fwrite()) does not
mean the data has actually been written

• What if you signal another process to read the file you just wrote to?

❖ Performance – buffering takes time
▪ Copying data into the stdio buffer consumes CPU cycles and

memory bandwidth

▪ Can potentially slow down high-performance applications, like a
web server or database (“zero-copy”)

❖ When is buffering faster? Slower?

25

CSE333, Spring 2023L06: File I/O

Lecture Outline

❖ File I/O with the C standard library

❖ C Stream Buffering

❖ POSIX Lower-Level I/O

26

CSE333, Spring 2023L06: File I/O

From C to POSIX

❖ Most UNIX-en support a common set of lower-level file
access APIs: POSIX – Portable Operating System Interface
▪ open(), read(), write(), close(), lseek()

• Similar in spirit to their f*() counterparts from the C std lib

• Lower-level and unbuffered compared to their counterparts

• Also less convenient

▪ You will have to use these to read file system directories and for
network I/O, so we might as well learn them now

• These are functionalities that C stdio doesn’t provide!

27

CSE333, Spring 2023L06: File I/O

open/close

❖ To open a file:
▪ Pass in the filename and access mode (similar to fopen)

▪ Get back a “file descriptor”

• Similar to FILE* from fopen, but is just an int

• -1 indicates an error

❖ Open descriptors: 0 (stdin), 1 (stdout), 2 (stderr)
28

#include <fcntl.h> // for open()

#include <unistd.h> // for close()

...

int fd = open("foo.txt", O_RDONLY);

if (fd == -1) {

perror("open failed");

exit(EXIT_FAILURE);

}

...

close(fd);

CSE333, Spring 2023L06: File I/O

Reading from a File

❖ ssize_t read(int fd, void* buf, size_t count);

▪ Advances forward in the file by number
of bytes read

▪ Returns the number of bytes read

• Might be fewer bytes than you requested (!!!)

• Returns 0 if you’re already at the end-of-file

• Returns -1 on error (and sets errno)

▪ There are some surprising error modes (check errno)

• EBADF: bad file descriptor

• EFAULT: output buffer is not a valid address

• EINTR: read was interrupted, please try again (ARGH!!!! 😤😠)

• And many others…

29

ssize_t read(int fd, void* buf, size_t count);

CSE333, Spring 2023L06: File I/O

One method to read() 𝑛 bytes

31

int fd = open(filename, O_RDONLY);

char* buf = ...; // buffer of appropriate size

int bytes_left = n;

int result;

while (bytes_left > 0) {

result = read(fd, buf + (n - bytes_left), bytes_left);

if (result == -1) {

if (errno != EINTR) {

// a real error happened, so return an error result

}

// EINTR happened, so do nothing and try again

continue;

} else if (result == 0) {

// EOF reached, so stop reading

break;

}

bytes_left -= result;

}

close(fd);

readN.c

CSE333, Spring 2023L06: File I/O

Other Low-Level Functions

❖ Read man pages to learn about:
▪ write() – write data

• #include <unistd.h>

▪ fsync() – flush data to the underlying device

• #include <unistd.h>

▪ opendir(), readdir(), closedir() – deal with directory
listings

• Make sure you read the section 3 version (e.g., man 3 opendir)

• #include <dirent.h>

❖ A useful shortcut sheet (from CMU):
http://www.cs.cmu.edu/~guna/15-123S11/Lectures/Lecture24.pdf

32

http://www.cs.cmu.edu/~guna/15-123S11/Lectures/Lecture24.pdf

CSE333, Spring 2023L06: File I/O

C Standard Library vs. POSIX

❖ C standard library implements a subset of POSIX

▪ e.g., POSIX provides directory manipulation that C std lib doesn’t

❖ C standard library implements automatic buffering

❖ C standard library has a nicer API

❖ The two are similar but C standard library builds on top of
POSIX

▪ Choice between high-level and low-level

▪ Will depend on the requirements of your application

▪ You will explore this relationship in Exercise 4!

33

CSE333, Spring 2023L06: File I/O

Extra Exercise #1

❖ Write a program that:
▪ Uses argc/argv to receive the name of a text file

▪ Reads the contents of the file a line at a time

▪ Parses each line, converting text into a uint32_t

▪ Builds an array of the parsed uint32_t’s

▪ Sorts the array

▪ Prints the sorted array to stdout

❖ Hint: use man to read about
getline, sscanf, realloc,
and qsort

34

bash$ cat in.txt

1213

3231

000005

52

bash$./extra1 in.txt

5

52

1213

3231

bash$

CSE333, Spring 2023L06: File I/O

Extra Exercise #2

❖ Write a program that:

▪ Loops forever; in each loop:

• Prompt the user to
input a filename

• Reads a filename
from stdin

• Opens and reads
the file

• Prints its contents
to stdout in the format shown:

❖ Hints:

▪ Use man to read about fgets

▪ Or, if you’re more courageous, try man 3 readline to learn about
libreadline.a and Google to learn how to link to it

35

00000000 50 4b 03 04 14 00 00 00 00 00 9c 45 26 3c f1 d5

00000010 68 95 25 1b 00 00 25 1b 00 00 0d 00 00 00 43 53

00000020 45 6c 6f 67 6f 2d 31 2e 70 6e 67 89 50 4e 47 0d

00000030 0a 1a 0a 00 00 00 0d 49 48 44 52 00 00 00 91 00

00000040 00 00 91 08 06 00 00 00 c3 d8 5a 23 00 00 00 09

00000050 70 48 59 73 00 00 0b 13 00 00 0b 13 01 00 9a 9c

00000060 18 00 00 0a 4f 69 43 43 50 50 68 6f 74 6f 73 68

00000070 6f 70 20 49 43 43 20 70 72 6f 66 69 6c 65 00 00

00000080 78 da 9d 53 67 54 53 e9 16 3d f7 de f4 42 4b 88

00000090 80 94 4b 6f 52 15 08 20 52 42 8b 80 14 91 26 2a

000000a0 21 09 10 4a 88 21 a1 d9 15 51 c1 11 45 45 04 1b

... etc ...

