
CSE 333 – SECTION 9
Threads

HW4
• How’s HW4 going? Any Questions?

Threads
• Sequential execution of a program.
• Contained within a process.
• Multiple threads can exist within the same process.

• Every process starts with one thread of execution, can spawn
more.

• Threads in a single process share one address space
• Instructions (code)
• Static (global) data
• Dynamic (heap) data
• Environment variables, open files, sockets, etc.

POSIX threads (Pthreads)
• The POSIX standard provides APIs for creating and

manipulating threads.
• Part of the standard C/C++ libraries, declared in pthread.h

Core pthread functions
• pthread_create(thread, attr, start_routine, arg)
• pthread_exit(status)
• pthread_join(thread, value_ptr)
• pthread_cancel (thread)

pthread_create
#include <pthread.h>

int pthread_create(pthread_t *thread,

const pthread_attr_t *attr,

void *(*start_routine) (void *),

void *arg);

• pthread_create creates a new thread and calls start_routine with arg as
its parameter.

• pthread_create arguments:
• thread: Pointer to a unique identifier for the new thread. (output parameter)
• attr: An attribute object that may be used to set thread attributes. Use NULL for the

default values.
• start_routine: The C routine that the thread will execute once it is created.
• arg: A single argument that may be passed to start_routine. It must be passed by

reference as a pointer cast of type void. NULL may be used if no argument is to be
passed.

• Compile and link with –pthread.

Terminating Threads
• There are several ways in which a thread may be

terminated:
• The thread returns normally from its starting routine; Its work is

done.
• The thread makes a call to the pthread_exit subroutine -

whether its work is done or not.
• The thread is canceled by another thread via the
pthread_cancel routine.

• The entire process is terminated due to making a call to either the
exec() or exit().

• If main()finishes first, without calling pthread_exit explicitly
itself.

pthread_exit
void pthread_exit(void *retval);

• Allows the user to terminate a thread and to specify an
optional termination status parameter, retval.

• In subroutines that execute to completion normally, you
can often dispense with calling pthread_exit().

• Calling pthread_exit() from main():
• If main() finishes before the threads it spawned, and does not

call pthread_exit() explicitly, all the threads it created will terminate.
• To allow other threads to continue execution, the main thread

should terminate by calling pthread_exit() rather than exit().

pthread_join
int pthread_join(pthread_t thread, void **retval);

• Synchronization between threads.
• pthread_join blocks the calling thread until the specified thread

terminates and then the calling thread joins the terminated thread.
• Only threads that are created as joinable can be joined; a thread

created as detached can never be joined. (Refer pthread_create)
• The target thread's termination return status can be obtained if it was

specified in the target thread's call to pthread_exit().

Demo: pthreads.cc

mutex
• pthread_mutex_init(mutex,attr)
• pthread_mutex_lock(mutex)
• pthread_mutex_unlock(mutex)
• pthread_mutex_destroy(mutex)

Demo: total_locking.cc

Boost library
• Used in the homework to help facilitate dealing with

strings. Some uses include:
• Trimming
• Regex (Pattern matching)
• Splitting
• Replacing

• API:http://www.boost.org/doc/libs/1_57_0/doc/html/string_
algo/reference.html

• Sample Code:
Demo: boostexample.cc

C++ threads
• Not used for the exercise, but is a simpler thread library

for C++:
• #include <thread>
• Still compile with –pthread

Demo: threads.cc

Section exercise (not to be turned in)
• Create a program that spawns two or three different

threads, each of which prints a numeric sequence.
Examples:
• First n odd numbers
• First n factorials
• First n primes

• Use pthread.cc for ideas, but the structure might not be
the same.

• Can you do something in the threads (maybe sleep()) so
that different runs of the program don’t always produce
the same output?

