
CSE 333 – SECTION 3
POSIX I/O Functions

Administrivia

• New TAs!

• David Porter

• Yibo Cao

• HW1 Due Tonight

• HW2 Due Thursday April 27th

• Midterm on May 5th

• (And regular exercises in between)

Basic File Operations

• Open the file

• Read from the file

• Write to the file

• Close the file / free up resources

System I/O Calls

int open(char* filename, int flags, mode_t mode);

Returns an integer which is the file descriptor.

Returns -1 if there is a failure.

filename: A string representing the name of the file.

flags: An integer code describing the access.

O_RDONLY -- opens file for read only

O_WRONLY – opens file for write only

O_RDWR – opens file for reading and writing

O_APPEND --- opens the file for appending

O_CREAT -- creates the file if it does not exist

O_TRUNC -- overwrite the file if it exists

mode: File protection mode. Ignored if O_CREAT is not specified.

[man 2 open]

System I/O Calls

ssize_t read(int fd, void *buf, size_t count);

ssize_t write(int fd, const void *buf, size_t count);

fd: file descriptor.

buf: address of a memory area into which the data is read.

count: the maximum amount of data to read from the stream.

The return value is the actual amount of data read from the file.

int close(int fd);

Returns 0 on success, -1 on failure.

[man 2 read]

[man 2 write]

[man 2 close]

Errors

• When an error occurs, the error number is stored in errno,

which is defined under <errno.h>

• View/Print details of the error using perror() and errno.

• POSIX functions have a variety of error codes to represent

different errors. Some common error conditions:

• EBADF - fd is not a valid file descriptor or is not open for reading.

• EFAULT - buf is outside your accessible address space.

• EINTR - The call was interrupted by a signal before any data was read.

• EISDIR - fd refers to a directory.

• errno is shared by all library functions and overwritten

frequently, so you must read it right after an error to be sure of

getting the right code

[man 3 errno]

[man 3 perror]

Reading a file
#include <errno.h>
#include <unistd.h>

...

char *buf = ...; // buffer has size n
int bytes_left = n; // where n is the length of file in bytes
int result = 0;

while (bytes_left > 0) {
result = read(fd, buf + (n-bytes_left), bytes_left);
if (result == -1) {

if (errno != EINTR) {
// a real error happened, return an error result

}
// EINTR happened, do nothing and loop back around
continue;

}
bytes_left -= result;

}

Reading a file
#include <errno.h>
#include <unistd.h>
#define N 2048

char buf...; // buffer size unspecified
int bytes_read = 0;
int result = 0;
int fd = open("filename", O_RDONLY);

while (bytes_read < N) {
// Read from the file
result = read(fd, buf + bytes_read, N - bytes_read);
if (result == -1) {
if (errno != EINTR) {
// a real error happened, return an error result

}
continue; // EINTR happened, loop back and try again

}
bytes_read += result;

}

Reading a file
#include <errno.h>
#include <unistd.h>
#define N 2048

char buf...; // buffer size unspecified
int bytes_read = 0;
int result = 0;
int fd = open("filename", O_RDONLY);
// BUG: if filesize < N, infinite loop!
while (bytes_read < N) {
// BUG: if N >= buf size, buffer overflow!
result = read(fd, buf + bytes_read, N - bytes_read);
if (result == -1) {
if (errno != EINTR) {
// a real error happened, return an error result

}
continue; // EINTR happened, loop back and try again

}
bytes_read += result;

}

Again, why are we learning POSIX

functions?
• They are unbuffered. You can implement different

buffering/caching strategies on top of read/write.

• More explicit control since read and write functions are

system calls and you can directly access system

resources.

• There is no standard higher level API for network and

other I/O devices.

STDIO vs. POSIX Functions

• User mode vs. Kernel mode.

• STDIO library functions

– fopen, fread, fwrite, fclose, etc.

use FILE* pointers.

• POSIX functions

– open, read, write, close, etc.

use integer file descriptors.

Directories

• Accessing directories:

• Open a directory

• Iterate through its contents

• Close the directory

• Opening a directory:

DIR *opendir(const char* name);

• Opens a directory given by name and provides a pointer DIR* to

access files within the directory.

• Don’t forget to close the directory when done:
int closedir(DIR *dirp);

[man 0P dirent.h]

[man 3 opendir]

[man 3 closedir]

Directories

• Reading a directory file.

struct dirent *readdir(DIR *dirp);

struct dirent {

ino_t d_ino; /* inode number for the dir entry */

off_t d_off; /* not necessarily an offset */

unsigned short d_reclen; /* length of this record */

unsigned char d_type; /* type of file (not what you think);

not supported by all file system types */

char d_name[NAME_MAX+1] ; /* directory entry name */

};

[man 3 readdir]

[man readdir]

Read the man pages

• man, section 2: Linux system calls
• man 2 intro

• man 2 syscalls

• man 2 open

• man 2 read

• …

• man, section 3: glibc / libc library functions
• man 3 intro

• man 3 fopen

• man 3 fread

• man 3 stdio for a full list of functions declared in <stdio.h>

• …

Section Exercises 1 & 2

Find a partner if you wish.

1. Write a C program that given a directory:

• Prints the names of the entries to stdout

• Analogous to the bash command ls

2. Write a C program that given a filename:

• Prints the contents of the file to stdout

• Analogous to the bash command cat

You must use POSIX functions! And handle any errors!

:)

