Administrivia

HW3 due next Thursday night

Today - overview of networking

Then - client-side and server-side TCP sockets
Rest of the quarter

HW4 out next Friday; due last Thur. of the quarter (+ late days if you have/need them)

A few more exercises, but not for a few days (and not the same night as hw3 due)

Final exam Wed. June 8, 2:30-4:20. Review session late Tue. June 7 if there is demand for it. (Is there?)
Networks from 10,000ft

clients

servers
The “physical” layer

Individual bits are modulated onto a wire or transmitted over radio

- physical layer specifies how bits are encoded at a signal level
- e.g., a simple spec would encode “1” as +1V, “0” as -1V

1 0 1 0 1
Multiple computers on a LAN contend for the network medium

- media access control (MAC) specifies how computers cooperate
- link layer also specifies how bits are packetized and NICs are addressed
The “network” layer (IP)

The Internet Protocol (IP) routes packets across multiple networks

- every computer has a unique Internet address (IP address)
- individual networks are connected by routers that span networks
The “network” layer (IP)

Protocols to:

- let a host find the MAC address of an IP address on the same network
- let a router learn about other routers and figure out how to get IP packets one step closer to their destination
The “network” layer (IP)

Packet encapsulation

- an IP packet is encapsulated as the payload of an Ethernet frame
- as IP packets traverse networks, routers pull out the IP packet from an ethernet frame and plunk it into a new one on the next network
The “transport” layer (TCP, UDP)

TCP

‣ the “transmission control protocol”
‣ provides apps with reliable, ordered, congestion-controlled byte streams
‣ fabricates them by sending multiple IP packets, using sequence numbers to detect missing packets, and retransmitting them
‣ a single host (IP address) can have up to 65,535 “ports”
 ‣ kind of like an apartment number at a postal address
The “transport” layer (TCP, UDP)

TCP

- useful analogy: how would you send a book by mail via postcards?
- split the book into multiple postcards, send each one by one, including sequence numbers that indicate the assembly order
- receiver sends back postcards to acknowledge receipt and indicate which got lost in the mail
The “transport” layer (TCP)

Packet encapsulation -- same as before!
The “transport” layer (TCP)

Applications use OS services to establish TCP streams

- the “Berkeley sockets” API -- a set of OS system calls
- clients `connect()` to a server IP address + application port number
- servers `listen()` for and `accept()` client connections
- clients, servers `read()` and `write()` data to each other
The “transport” layer (UDP)

UDP

- the “user datagram protocol”
- provides apps with unreliable packet delivery
- UDP datagrams are fragmented into multiple IP packets
 - UDP is a really thin, simple layer on top of IP
Layer 5: session layer
- supposedly handles establishing, terminating application sessions
- RPC kind of fits in here

Layer 6: presentation layer
- supposedly maps application-specific data units into a more network-neutral representation
- encryption (SSL) kind of fits in here
The “application” layer

Application protocols
- the format and meaning of messages between application entities
- e.g., HTTP is an application level protocol that dictates how web browsers and web servers communicate
 ‣ HTTP is implemented on top of TCP streams
The “application” layer

Packet encapsulation -- same as before!
The “application” layer

Packet encapsulation -- same as before!
The “application” layer

Popular application-level protocols:

- **DNS**: translates a DNS name (**www.google.com**) into one or more IP addresses (74.125.155.105, 74.125.155.106, ...)
 - a hierarchy of DNS servers cooperate to do this

- **HTTP**: web protocols

- **SMTP, IMAP, POP**: mail delivery and access protocols

- **ssh**: remote login protocol

- **bittorrent**: peer-to-peer, swarming file sharing protocol
See you on Monday!