CSE 333

lec 23: undefined behavior

Xi Wang
Department of Computer Science & Engineering
University of Washington

administrivia

Thursday: hw4 due

Friday: wrapup / Q&A

next Monday: Q&A (560)

next Wednesday: final exam, open book/notes/laptop

most time-consuming bugs

memory bugs: dangling pointer, double free, “&var” vs “var”,
leak (“800 valgrind warnings”), null pointers (“3 days”),
variable lifetime (“1 week”)

logical bugs: wrong functions (“getnameinfo”), wrong
variables (“head” vs “header”), wrong seek offset/count

others: missing semicolons, missing parentheses, size_tvs
uint32_t, performance bugs, “no idea what happened”

ex19 quotes

The[re] are so many bugs in CSE333 that drove me crazy.

I've tried my best to repress most of the pain this class has
caused me...

undefined behavior

e can lead to unstable code: intended code altered by
compilers due to undefined behavior

m useful code unexpectedly gone
= not a compiler bug: legal optimizations
m Not a spec bug: spec allows anything to happen

 joint work with Nickolai Zeldovich, Frans Kaashoek,
Armando Solar-Lezama

Unstable code demo: Intel's CPU emulator

uint64 t mul(uintl6 t a, uintl6_t b) {
uint32 t ¢ = a * b;
return c;

}

Question: what's the result of mul (60000, 60000)?

» (a) 3,600,000,000
» (b) 18,446,744,073,014,584,320
» (c) something else

13/55

Unstable code has serious security implications

» Unstable code = buffer overflow (full control)
» Unstable code = denial of service (crash)
» Unstable code = non-random random numbers

http://lists.apple.com/archives/security-announce/2013/0ct/msgoo0o4.html

Libc
Impact: Under unusual circumstances some random numbers may be predictable

Description: ...

CVE-2013-5180

14/55

State of the art

» Wisdom: turn off optimizations if seeing weird bugs

» Blog posts and write-ups
- Chris Lattner: What every C programmer should know about undefined behavior
- John Regehr: A guide to undefined behavior in C and C++
- Robert Seacord: Dangerous optimizations and the loss of causality

15/55

Challenges

» How prevalent?
» How to think about it?
» How to detect?

16/55

Contributions

» How prevalent: major compilers; 160+ new bugs

G A

i0S Android Chrome Python
» How to think about it: formulated as boolean satisfiability
» How to detect: a practical checker STACK; adopted by companies

‘cloudera :3Dropbox @

» Influenced C++ committee to form SG12 group

17/55

Part 0: undefined behavior

» What is undefined behavior
» How undefined behavior leads to unstable code

18/55

Attack: unstable code = buffer overflow

char *buf e

char *buf_end S

unsigned int off = /* read from untrusted input */,
if (buf + off >= buf _end)

return; /* validate off: buf+off too Large*/
if (buf + off < buf)
return; /* validate off: overflow, buf+off wrapped around */

/* access buf[O..off-1] */

Cﬁf" £ Xen

buf_end

{
T

buf + off

» gcc: buf + off cannot become smaller (different from hardware!)
- gcc:if (buf + off < buf) = if (false)

19/55

Undefined behavior allows such optimizations

Undefined behavior: the spec “imposes no requirements”

» Original goal: emit efficient code
» Example: division by zero is undefined behavior
- Spec: program can do anything if that occurs
- Compiler: no need to emit zero check on divisor

X /'y = div %esi
/* no zero check ony */

» Pointer overflow is undefined behavior, too!
- Program can do anything if “buf + off"” overflows

- gcc:if (buf + off < buf) = if (false)

20/55

Examples of undefined behavior in C

From real code: pointer p; signed integer x

Pointer overflow: if (p + 100 < p)
Signed integer overflow: if (x + 100 < x)
Oversized shift: if (1(1 << x))
Null pointer dereference: *p; if (!p)
Absolute value overflow: if (abs(x) < 0)

» Problem: unstable code confuses programmers
- Code may or may not work
- Depend on compilers (+ hardware/QOS)

21/55

“This will create MAJOR SECURITY ISSUES
in ALL MANNER OF CODE. | don't care if

your language lawyers tell you gcc is
right. ... FIXTHIS! NOW!”

a gcc user
bug #30475 - assert(int+100 > int) optimized away

“I am sorry that you wrote broken code to

begin with ... GCCis not going to
change.”

a gcc developer
bug #30475 - assert(int+100 > int) optimized away

Part I: how prevalent?

Test 12 major C/C++ compilers
gcc
aCC (HP)
icc (Intel)
open64 (AMD)
suncc (Oracle)
ti (TI's TMS320C6000)

clang

armcc (ARM)

msvc (Microsoft)

pathcc (PathScale)

xlc (IBM)

windriver (Wind River's Diab)

24/55

Examples of unstable code

From real code: pointer p; signed integer x

Pointer overflow: if (p + 100 < p)

Signed integer overflow: if (x + 100 < Xx)
Oversized shift: if (1(1 << x))
Null pointer dereference: *p; if (!p)
Absolute value overflow: if (abs(x) < 0)

= if
= if
= 1if
= if

= if

(false)
(false)
(false)
(false)
(false)

25/55

Major compilers discard unstable code

gcc-4.9.1
clang-3.4
aCC-6.25
armcc-5.02
icc-14.0.0
msvc-14.0.0
open64-14.0.0
pathcc-1.0.0
suncc-5.12
ti-7.4.2
windriver-5.9.2

xlc-12.1

if(p+100<p) if(x+100<x) if(1(1<<x)) xp; if(!p) if(abs(x)<0)

O
O
O
O
N

2
2

01

=
o|o
ol|o
o

o)
@)
N

)
N w

O

T e e
I N
o e
o e
— |

O

26/55

Compilers become more aggressive over time

if(p+100<p) if(x+100<x) if(1(1<<x)) xp; if(!p) if(abs(x)<0)

assogecraz [I N R —
200 gec2.95.3 | ICC R R —

(2006) gcc-3.4.6
(2007) gcc-4.2.1
(2014) gcc-4.9.1

(2009) clang-1.0
(2010) clang-2.8

(2014) clang-3.4

27/55

No single don't-be-evil optimization option

» Modern compilers are complicated
- gcc4.9:-02 turns on 203/274 mid-end passes
- Many parts make decisions: interaction and side effects
- Inlining + constant folding + range + dead code elim

» Consequence: hard to turn "off" one particular optimization

28/55

Unstable code affects a wide range of software

Unstable code found in software written using C/C++

» Higher-level languages: PHP, Python, Ruby
» Applications

- Web browsing: Chrome

- Movie decoding: FFmpeg

- Font rendering: FreeType

29/55

Summary of Part |

Unstable code is an emerging threat

» Programmers have made mistakes (for many years)
» Modern compilers make it worse

» Change/upgrade compiler = broken system

30/55

Part Il: how to think about unstable code

Strawman approach: as dead code
» Ask a compiler to warn whenever it eliminates dead code

» Problems
- Restricted to one particular compiler
- Not general: sensitive to optimizations
- Lots of false warnings: compiler kills dead code all the time

31/55

Our approach: as boolean satisfiability (SAT)

compiler general to a low false
independent bug class warning rate

as dead code

New: as SAT v v v

32/55

Cause: disagree on spec (undefined behavior)

O DaE

programmer: useful code compiler: dead code

STANDARD

spec

33/55

Formulation overview

» Disagreement A

- Compiler: program never invokes undefined behavior
» What can be done only with A: kill unstable code

- Mimic a super aggressive optimizer

Phase | Phase Il

optimize w/o A? — optimize w/ A?
SAT
oracle

do nothing
(not dead code)

do nothing

(typical dead code) unstable code

34/55

Step 1/2: Finding A

AwNn PR

if (buf + off >= buf_end)
return;

if (buf + off < buf)
return;

A: what compilers can assume from buf + off

» No pointer overflow: NOT(buf,, + off, > max)

35/55

Formulate A

Execution must not trigger undefined behavior at any code fragment

» Reach(e, in):with whatinput to reach/execute code fragment e
» Undef(e, in):with what input to trigger undefined behavior at e

A(in) = Vve: Reach(e, in) -» =Undef(e, in)

36/55

Example: compute A

AwNn PR

if (buf + off >= buf_end)
return;

if (buf + off < buf)
return;

Reach

Undef

A(in) = A, Reach(e, in) -» -Undef(e, in)

-(buf, + off, > max)

37/55

Step 2/2: reason about unstable code with A

AwNn PR

if (buf + off >= buf_end)
return;

if (buf + off < buf)
return;

» Is (buf + off < buf) equivalent to false?
- SAT oracle: N

» Is (buf + off < buf) equivalent to false w/ A?
- A: - (buf, + off, > max)
- SAT oracle: Y

“buf + off < buf”is unstable code

38/55

Find unstable code that can be turned into false

Find every boolean expression b that satisfies the following

(3in: b(in) # false A Reach(b, in)) # 1: not trivially dead code
A (Ain: b(in) # false A Reach(b, in) A A(in)) # 2: unstable code

» Generalize to find unstable code
- Expressions that can be turned into true only w/ A
- Statements that can become unreachable only w/ A

39/55

Understand false & missing errors

Phase |

optimize w/o A? — optimize w/ A?
SAT
oracle

do nothing
(not dead code)

do nothing

(typical dead code) unstable code

» Phase | not powerful enough: false errors (dead code)
» Phase Il not powerful enough: missing errors

40/55

Understand unstable CPU emulator

uinté4 t mul(uintl6é t a, uintl6 t b) {
uint32 t ¢ = a * b;
return c;

}

Question: what's the result of mul (60000, 60000)?

» (a) 3,600,000,000
» (b) 18,446,744,073,014,584,320
» (c) something else

41/55

Summary of Part li

Unstable code as SAT problem

» Formulate disagreement A
» Find optimization diff between w/o and w/ A
» Compiler-independent, precise, and general

42/55

Part lll: how to detect

STACK: unstable code checker

» Practical challenges
» Evaluation of STACK

43/55

Practical challenges

For every code fragment e in a program

A(in) = ve: Reach(e, in) - -Undef(e, in)

Problem: infeasible to compute

» Require to inspect the entire program by definition
» Precision: loops, function pointers, etc.
» Scalability

- Gigantic boolean predicate: unsolvable

- Hard to parallelize

44/55

STACK: per-function and approximation

» Analyze each function independently: smaller SAT and parallel
» Careful approximation to maintain high precision

- One-side error: no illegal optimization

- Trade-off: could miss bugs

A Correctness of approximation

As discussed in §3.2, Stack performs an optimization
if the corresponding query @ is unsatisfiable. Using an
approximate query Q' yields a correct optimization if 9’
is weaker than Q (i.e., @ — Q’): if Q' is unsatisfiable,
which enables the optimization, the original query Q must
also be unsatisfiable.

To prove the correctness of approximation, it suffices to
show that the approximate elimination query (5) is weaker
than the original query (3); the simplification queries (6)
and (4) are similar. Formally, given code fragment e, it
suffices to show the following:

R.(x) ANA(X) - R(X) A /\ Uu(x). (8)
dedomie)

45/55

Implementation of STACK

» LLVM compiler framework
» Boolector solver
» ~4,000 lines of C++ code

46/55

Easily integrated into development

C/C++ source — STACK — warnings

% ./configure
% stack-build make # intercept compiler invocation & dump data for analysis

% poptck # run checker in parallel

47/55

STACK provides informative warnings

A wWwNR

if (buf + off >= buf_end)
return;

if (buf + off < buf)
return;

The check at line 3 is simplified into false due to pointer overflow

model: | # possible optimization
%cmp3 = icmp ult i8* %add.ptr2, %buf
--> false
stack: # bug location
- buf.c:3
core: # undefined behavior involved
- buf.c:3

- pointer overflow

48/55

Evaluation

» |s STACK useful for finding unstable code?
» How precise are STACK's warnings?
» How much time to analyze a large code base using STACK?

49/55

STACK finds 160+ new bugs

» Applied STACK to many popular software

» Inspected warnings and submitted patches to developers
» Developers accepted most of our patches

¢C °

i0S Android Chrome Python

50/55

STACK warnings are precise

Manually classify warnings and confirm with developers

» Kerberos: STACK produced 11 warnings
- Developers accepted every patch (no warnings afterwards)
- Low false warning rate: 0/11
» Postgres: STACK produced 68 warnings
- 9 patches accepted: server crash
29 patches in discussion: developers blamed compilers
26 time bombs: can be optimized away by future compilers
4 false warnings: benign redundant code
Low false warning rate: 4/68
» Positive user feedback

51/55

STACK scales to large code bases

Intel Core i7-980 3.3 GHz, 6 cores

build time analysis time
Kerberos 1T min 2 min
Postgres 1 min 11 min

Linux kernel 33 min 62 min

files
705
770

14,136

52/55

Unstable code in the large: more bugs hiding

» Applied STACK to all Debian Wheezy packages

- 8,575 C/C++ packages

- ~150 days of CPU time to build and analyze
» STACK warns in ~40% of C/C++ packages

53/55

Discussion: future compilers and languages

Lesson: undefined behavior = unstable code

» Compiler structures: better control for programmers
- STACK: unified way of exploiting undefined behavior
- Easier to turn on/off optimizations
- Less sensitive to pass order

» Systems programming languages
- Less undefined: (1 << 31) defined in next C++
- More primitives: clang's _ builtin_*_overflow, Rust
- Performance trade-off: buffer overflow, race

54/55

Summary

» Unstable code: a new species of bugs
- Subtle

- Significant security implications
- SAT formulation and a practical tool STACK
» Language designers: be cautious about undefined behavior

» Compiler writers: use our techniques to generate better warnings
» Programmers: check your C/C++ code using STACK

http://css.csail.mit.edu/stack/

55/55

