There are 7 questions worth a total of 100 points. Please budget your time so you get to all of the questions. Keep your answers brief and to the point.

The exam is closed book, closed notes, closed electronics, closed telepathy, open mind.

If you don’t remember the exact syntax for something, make the best attempt you can. We will make allowances when grading.

Don’t be alarmed if there seems to be more space than is needed for your answers – we tried to include more than enough blank space.

Relax, you are here to learn.

Please wait to turn the page until everyone is told to begin

Score _________________ / 100

1. _____ / 20
2. _____ / 16
3. _____ / 16
4. _____ / 15
5. _____ / 15
6. _____ / 16
7. _____ / 2
Question 1. (20 points) A bit of C++ coding. We’ve discovered an old C program that keeps track of student grades. It has been partially converted from C to C++, but the data is still held in a collection of structs. As in C, all of the fields of a C++ struct are public by default, but a C++ struct defines a regular, new type, not just a struct tag. The code uses some C++ types (string, vector). Otherwise this is still procedural code, not classes with member functions. Here are the declarations:

```cpp
struct Course { // information about one course
    string dept_; // department ("CSE", "Art", ...)
    int num_;     // course number
    int credits_; // credit hours
    float grade_; // grade received (e.g., 4.0, 3.6, ...)
};

struct Transcript { // a student transcript
    string name_; // student name
    string major_; // student department
    vector<Course> all_courses_; // courses taken
};
```

For this problem, implement function GPAInDept on the next page. This function has two arguments: a Transcript and a string giving a department name. The function should return the grade point average (gpa) for all courses found in the transcript from that department. The gpa is computed by selecting the courses whose department matches the requested one, multiplying each grade by the credit hours for the course, adding those results, then dividing by the total credit hours for all selected courses.

Example: suppose the transcript contains: CSE 143, 5 credits, grade 3.6; History 100, 3 credits, 2.8; CSE 333, 4 credits, 3.8; and Art 490, 3 credits, 4.0. The gpa for “CSE” is \((3.6\times5 + 3.8\times4) / 9 = 3.69\).

Some brief reference information about the STL vector class, used in Transcript.

- If \(\text{lst}\) is a STL vector, then \(\text{lst}.\text{begin()}\) and \(\text{lst}.\text{end()}\) return iterator values of type \(\text{vector<...>::iterator}\) that might be useful.
- If \(it\) is an iterator, then \(*it\) can be used to reference the item it currently points to, and ++\(it\) will advance it to the next item, if any.
- Some useful operations on STL containers, including vector:
 - \(\text{c}.\text{clear}()\) – remove all elements from \(c\)
 - \(\text{c}.\text{size}()\) – return number of elements in \(c\)
 - \(\text{c}.\text{empty}()\) – true if number of elements in \(c\) is 0, otherwise false
 - \(\text{c}.\text{push_back}(x)\) – copy \(x\) to end of \(c\)
- You are free to use the C++11 \texttt{auto} keyword, C++11-style for-loops for iterating through containers, and any other features of standard C++11, but you are not required to use these.

Write your code on the next page. You can remove this page for reference if you wish.
Question 1. (cont.) Write your implementation below. The function heading is given for you, and you should assume that all necessary headers have already been included. Hint: you probably won’t need nearly all of this space.

// Return gpa for all courses in Transcript t where the
// course department matches the parameter dept.
// Return 0.0 if t contains no courses that match dept.
float GPAInDept(const Transcript &t, const string &dept) {

}
Question 2. (16 points) Smart pointers. The following program creates a short linked list. But it leaks memory because it never deletes any of the heap-allocated data.

Fix this program so it has no memory leaks. However, you may not alter what the program does, you may not replace pointers to data with copies of the data, and you may not insert any delete statements. Instead, you should fix the leaks by changing the code to use smart pointers appropriately instead of regular pointers. Cross out existing code and write new code as needed. Legibility is a big help – please write clearly.

```cpp
#include <iostream>    // needed only for printing list
#include <memory>      // smart pointers (for solution)
using namespace std;

struct Node {
    int* val_; // ptr to node’s data on heap
    Node *next_; // next node in list or nullptr if none
};

int main() {
    // create list
    Node *list = new Node();
    list->val_ = new int(17);
    Node *p = new Node();
    p->val_ = new int(42);
    p->next_ = nullptr;
    list->next_ = p;
    // print list
    for (auto n = list; n != nullptr; n = n->next_)
    
        cout << *(n->val_) << " ";

    cout << endl;
    return 0;
}
```
Question 3. (16 points) Not the inheritance question you were expecting. Give C++ code that could be put in place of the /* YOUR CODE HERE */ below such that the program compiles without warning and prints out the 13 characters Hello, World! followed by a newline (and nothing else) when run.

- You must provide one class definition and two method definitions (you can declare more methods.)
- Sample solution is 8 lines (but, like the supplied code, some methods are defined in one line). Your solution doesn’t need to have exactly the same number of lines.

```cpp
#include <iostream>
using namespace std;

/* YOUR CODE HERE */

class D : public C {
public:
    void m1();
    void m2();
};

void D::m1() { cout << "summer "; }
void D::m2() { cout << ", World"; }

int main(int argc, char** argv) {
    C* c = new D();
    char x = 'F';
    c->m1();
    c->m2();
    c->m3(x);
    cout << x << endl;
    return 0;
}
```
Question 4. (15 points) Memory mangling. Suppose we have the following struct to define nodes of a linked list whose data consists of heap-allocated C strings:

```c
struct node {
    char *s;       // pointer to string on the heap
    struct node *next; // pointer to next node, or NULL if none
};
```

Here are three functions that attempt to free one of these linked lists. For each one, write “WORKS” if the function works properly and frees all of the list and data, write “LEAK” if the function leaks memory (fails to free something), or write “DANGLE” if the function uses a dangling pointer (i.e., references memory using a pointer after that memory is freed). If there is a problem, give a brief description of what’s wrong – you don’t need to fix it. If there is more than one problem, identify all of them.

(a) (5 points)

```c
void free_list_1(struct node *lst) {
    if (lst == NULL)
        return;
    free(lst);
}
```

(b) (5 points)

```c
void free_list_2(struct node *lst) {
    if (lst == NULL)
        return;
    free(lst->s);
    free_list_2(lst->next);
    free(lst);
}
```

(c) (5 points)

```c
void free_list_3(struct node *lst) {
    if (lst == NULL)
        return;
    free(lst);
    free(lst->s);
    free_list_3(lst->next);
}
```
Question 5. (15 points) The list below describes several of the tasks that are performed by various TCP/IP networking functions. For each task, indicate which TCP/IP functions perform that task by writing the function name or names below the task description. A list of the possible functions is given at the end of the question. Note that some tasks are performed by more than one function, but all of them are performed by at least one function. Be sure your answers are specific – list only the function or functions that perform the immediate task described. Don’t list other functions that might have been called previously, even if these would be needed before doing the particular task.

a) Allocate a new file descriptor entry in the table of active file descriptors for this process.

b) Open a TCP stream so that it can be used to transmit bytes to or receive bytes from the stream.

c) Exchange (send or receive) bytes between a client and a server in either direction.

d) Translate a domain name like “attu.cs.washington.edu” to an IP address like 128.208.1.138.

e) In a server program, indicate to the operating system that it should allow clients to request service and that any requests received should be queued up until the server is ready to handle them.

List of possible networking functions:

- accept()
- bind()
- close()
- connect()
- inet_ntop()
- inet_pton()
- listen()
- getaddrinfo()
- getnameinfo()
- read()
- socket()
- write()
Question 6. (16 points) Concurrency. Consider the following program (#includes omitted to save space). The program calls function do_work many times to process parts of some larger job. The exact work done doesn’t matter and isn’t specified further, except that each call to do_work is completely independent of the rest of the code and does not share any data with anything else. One of the interns has added threads to try to take advantage of a multi-core system to get the total work done faster. There is a global variable work_done that records the number of times do_work has been called so far.

```c
const int NUM_THREADS = 4;  // # worker threads
const int NUM_ITER = 10000;  // # steps to be done by each worker

static int work_done = 0;
static pthread_mutex_t sum_lock;

// Do one chunk of work
void do_work() { ... details omitted ... }

void *thread_main(void *arg) {
    pthread_mutex_lock(&sum_lock);
    for (int i = 0; i < NUM_ITER; i++) {
        do_work();
        work_done++;
    }
    pthread_mutex_unlock(&sum_lock);
    return NULL;
}

int main(int argc, char** argv) {
    pthread_t thds[NUM_THREADS];
    pthread_mutex_init(&sum_lock, NULL);

    for (int i = 0; i < NUM_THREADS; i++) {
        if (pthread_create(&thds[i],NULL,&thread_main,NULL) != 0) {
            std::cerr << "pthread_create failed" << std::endl;
            exit(1);
        }
    }

    std::cout << "Total: " << work_done << std::endl;
    pthread_mutex_destroy(&sum_lock);
    return 0;
}
```

Answer questions about this code on the next page. You may remove this page from the exam if that is convenient.
Question 6. (cont.) (a) (6 points) When testing this code, it seems to run more slowly than expected – not much faster than the original single-threaded version. What’s the bug in the code that causes this particular problem and how should it be fixed?

(b) (5 points) The main function prints the value of variable work_done after it creates all the threads. If we execute the original program with no changes, which of the following values could be printed by that output statement? Circle all of the ones that are possible. Note that there might be additional values that could be printed that are not listed. Just indicate from the ones given here which ones could appear.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>8586</th>
<th>20000</th>
<th>36157</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10000</td>
<td>25305</td>
<td>40000</td>
<td></td>
</tr>
<tr>
<td>1571</td>
<td>11110</td>
<td>30000</td>
<td>42000</td>
<td></td>
</tr>
</tbody>
</table>

(c) (5 points) If the program can print any value other than 40000 (i.e., number of threads times number of iterations per thread), what is the bug that allows this to happen, and how should it be fixed? If the program always produces the right answer and there is nothing to be fixed, say so. If a fix is needed, your solution should still allow concurrent execution of the threads (i.e., “remove concurrency” is not the right answer). You do not need to provide detailed code; just give a specific explanation of what needs to be done.
Question 7. (2(!) free points) We should have had a clever or funny (or at least mildly amusing) question here, but couldn’t come up with anything. What should it have been?

Have a great time the rest of the summer and best wishes for the future !!

The CSE 333 staff