CSE 333
Lecture 10 - references, const, classes

Hal Perkins
Department of Computer Science & Engineering
University of Washington
Administrivia

HW2 out today, due in two weeks

New exercise out today, due before class Friday

Sections tomorrow: C++. const / references / classes

Look at C++ Primer for details and explanations. We won’t have time in class to cover everything useful.
Administrivia

The 8:30 section is officially deprecated/defunct/gone

- If you are registered for that one, please attend either one of the others.
Today’s goals

Useful C++ features
- references, const

Introducing C++ classes
- defining, using them
Reminder: pointers

C: a pointer is a variable containing an address
- you can change its value to change what it is pointing to
- a pointer can contain the address of a different variable

```c
int main(int argc, char **argv) {
    int x = 5, y = 10;
    int *z = &x;

    *z += 1;    // sets x to 6
    x += 1;     // sets x (and therefore *z) to 7

    z = &y;     // sets z to the address of y
    *z += 1;    // sets y (and therefore *z) to 11

    return EXIT_SUCCESS;
}
```

pointer.cc
Reminder: pointers

C: a pointer is a variable containing an address
- you can change its value to change what it is pointing to
- a pointer can contain the address of a different variable

```cpp
int main(int argc, char **argv) {
    int x = 5, y = 10;
    int *z = &x;

    *z += 1;    // sets x to 6
    x += 1;     // sets x (and therefore *z) to 7

    z = &y;     // sets z to the address of y
    *z += 1;    // sets y (and therefore *z) to 11

    return EXIT_SUCCESS;
}
```

pointer.cc
Reminder: pointers

C: a pointer is a variable containing an address

- you can change its value to change what it is pointing to
- a pointer can contain the address of a different variable

```c
int main(int argc, char **argv) {
    int x = 5, y = 10;
    int *z = &x;

    *z += 1; // sets x to 6
    x += 1;  // sets x (and therefore *z) to 7

    z = &y;  // sets z to the address of y
    *z += 1; // sets y (and therefore *z) to 11

    return EXIT_SUCCESS;
}
```
Reminder: pointers

C: a pointer is a variable containing an address
- you can change its value to change what it is pointing to
- a pointer can contain the address of a different variable

```c
int main(int argc, char **argv) {
    int x = 5, y = 10;
    int *z = &x;

    *z += 1;  // sets x to 6
    x += 1;  // sets x (and therefore *z) to 7
    
    z = &y;  // sets z to the address of y
    *z += 1;  // sets y (and therefore *z) to 11

    return EXIT_SUCCESS;
}
```
Reminder: pointers

C: a pointer is a variable containing an address
- you can change its value to change what it is pointing to
- a pointer can contain the address of a different variable

```c
int main(int argc, char **argv) {
    int x = 5, y = 10;
    int *z = &x;

    *z += 1;       // sets x to 6
    x += 1;        // sets x (and therefore *z) to 7

    z = &y;        // sets z to the address of y
    *z += 1;       // sets y (and therefore *z) to 11

    return EXIT_SUCCESS;
}
```

pointer.cc
Reminder: pointers

C: a pointer is a variable containing an address
- you can change its value to change what it is pointing to
- a pointer can contain the address of a different variable

```c
int main(int argc, char **argv) {
    int x = 5, y = 10;
    int *z = &x;

    *z += 1;  // sets *z (and therefore x) to 6
    x += 1;   // sets x (and therefore *z) to 7

    z = &y;   // sets z to the address of y
    *z += 1;  // sets *z (and therefore y) to 11

    return EXIT_SUCCESS;
}
```

- `x` points to the address `0xbfff2d0`, hence `x = 7`.
- `y` points to the address `0xbfff2d0` after changing `z` to point to `y`, hence `y = 11`.
- `z` initially points to `0xbfff2d0`.
References

C++: introduces references as *part of the language*

- a reference acts like an **alias** for some other variable

 ‣ **alias**: another name that is bound to the aliased variable

 ‣ mutating a reference is mutating the referenced variable

```c
int main(int argc, char **argv) {
    int x = 5, y = 10;
    int &z = x;  // binds the name "z" to variable x

    z += 1;  // sets z (and thus x) to 6
    x += 1;  // sets x (and thus z) to 7

    z = y;   // sets z (and thus x) to the value of y
    z += 1;  // sets z (and thus x) to 11

    return EXIT_SUCCESS;
}
```

x | 5
y | 10
References

C++: introduces references as part of the language

- a reference is \textbf{an alias} for some other variable

 - \textit{alias}: another name that is bound to the aliased variable

 - mutating a reference \textbf{is} mutating the referenced variable

```cpp
int main(int argc, char **argv) {
    int x = 5, y = 10;
    int &z = x; // binds the name "z" to variable x

    z += 1; // sets z (and thus x) to 6
    x += 1; // sets x (and thus z) to 7

    z = y; // sets z (and thus x) to the value of y
    z += 1; // sets z (and thus x) to 11

    return EXIT_SUCCESS;
}
```

\texttt{x,z} 5
\texttt{y} 10
References

C++: introduces references as part of the language

- a reference is **an alias** for some other variable

 ‣ **alias**: another name that is bound to the aliased variable

 ‣ mutating a reference is mutating the referenced variable

```cpp
int main(int argc, char **argv) {
    int x = 5, y = 10;
    int &z = x; // binds the name "z" to variable x
    z += 1; // sets z (and thus x) to 6
    x += 1; // sets x (and thus z) to 7
    z = y; // sets z (and thus x) to the value of y
    z += 1; // sets z (and thus x) to 11

    return EXIT_SUCCESS;
}
```

```
x, z | 6
y    | 10
```
References

C++: introduces references as part of the language

- a reference is **an alias** for some other variable

 ‣ **alias**: another name that is bound to the aliased variable

 ‣ mutating a reference **is** mutating the referenced variable

```cpp
int main(int argc, char **argv) {
    int x = 5, y = 10;
    int &z = x;  // binds the name "z" to variable x
    z += 1;    // sets z (and thus x) to 6
    x += 1;    // sets x (and thus z) to 7
    z = y;     // sets z (and thus x) to the value of y
    z += 1;    // sets z (and thus x) to 11

    return EXIT_SUCCESS;
}
```

```plaintext
x, z | 7
y   | 10
```

reference1.cc
References

C++: introduces references as part of the language

- a reference is **an alias** for some other variable

 - **alias**: another name that is bound to the aliased variable

 - mutating a reference **is** mutating the referenced variable

```cpp
int main(int argc, char **argv) {
    int x = 5, y = 10;
    int &z = x; // binds the name "z" to variable x

    z += 1; // sets z (and thus x) to 6
    x += 1; // sets x (and thus z) to 7

    z = y; // sets z (and thus x) to the value of y
    z += 1; // sets z (and thus x) to 11

    return EXIT_SUCCESS;
}
```

reference1.cc
References

C++: introduces references as part of the language

- a reference is **an alias** for some other variable
 - **alias**: another name that is bound to the aliased variable
 - mutating a reference **is** mutating the referenced variable

```cpp
int main(int argc, char **argv) {
    int x = 5, y = 10;
    int &z = x; // binds the name "z" to variable x
    z += 1;    // sets z (and thus x) to 6
    x += 1;    // sets x (and thus z) to 7
    z = y;     // sets z (and thus x) to the value of y
    z += 1;    // sets z (and thus x) to 11
    return EXIT_SUCCESS;
}
```

```plaintext
x, z 11
y 10
```

reference1.cc
Pass by reference

C++ allows you to truly pass-by-reference

- client passes in an argument with normal syntax
 - function uses reference parameters with normal syntax
 - modifying a reference parameter modifies the caller’s argument

```cpp
void swap(int &x, int &y) {
    int tmp = x;
    x = y;
    y = tmp;
}

int main(int argc, char **argv) {
    int a = 5, b = 10;

    swap(a, b);
    cout << "a: " << a << " b: " << b << endl;
    return EXIT_SUCCESS;
}
```

```bash
(main) a 5
(main) b 10
```
Pass by reference

C++ allows you to truly pass-by-reference

- client passes in an argument with normal syntax
 - function uses reference parameters with normal syntax
 - modifying a reference parameter modifies the caller’s argument

```cpp
void swap(int &x, int &y) {
    int tmp = x;
    x = y;
    y = tmp;
}

int main(int argc, char **argv) {
    int a = 5, b = 10;

    swap(a, b);
    cout << "a: " << a << " b: " << b << endl;
    return EXIT_SUCCESS;
}
```

```
(main) a 5
(main) b 10
```
Pass by reference

C++ allows you to truly pass-by-reference

- client passes in an argument with normal syntax
 - function uses reference parameters with normal syntax
 - modifying a reference parameter modifies the caller’s argument

```cpp
void swap(int &x, int &y) {
    int tmp = x;
    x = y;
    y = tmp;
}

int main(int argc, char **argv) {
    int a = 5, b = 10;
    swap(a, b);
    cout << "a: " << a << " b: " << b << endl;
    return EXIT_SUCCESS;
}
```

passbyreference.cc

CSE333 lec 10 C++.2 // 01-29-14 // Perkins
Pass by reference

C++ allows you to truly pass-by-reference

- client passes in an argument with normal syntax
 - function uses reference parameters with normal syntax
 - modifying a reference parameter modifies the caller’s argument

```cpp
class swap {
public:
    void swap(int &x, int &y) {
        int tmp = x;
        x = y;
        y = tmp;
    }

    int main(int argc, char **argv) {
        int a = 5, b = 10;
        swap(a, b);
        cout << "a: " << a << " b: " << b << endl;
        return EXIT_SUCCESS;
    }
}
```
Pass by reference

C++ allows you to truly pass-by-reference

- client passes in an argument with normal syntax
 - function uses reference parameters with normal syntax
 - modifying a reference parameter modifies the caller’s argument

```c
void swap(int &x, int &y) {
    int tmp = x;
    x = y;
    y = tmp;
}

int main(int argc, char **argv) {
    int a = 5, b = 10;

    swap(a, b);
    cout << "a: " << a << " b: " << b << endl;
    return EXIT_SUCCESS;
}
```

passbyreference.cc
Pass by reference

C++ allows you to truly pass-by-reference

- client passes in an argument with normal syntax
 - function uses reference parameters with normal syntax
 - modifying a reference parameter modifies the caller’s argument

```cpp
void swap(int &x, int &y) {
    int tmp = x;
    x = y;
    y = tmp;
}

int main(int argc, char **argv) {
    int a = 5, b = 10;
    swap(a, b);
    cout << "a: " << a << " b: " << b << endl;
    return EXIT_SUCCESS;
}
```

passbyreference.cc
Pass by reference

C++ allows you to truly pass-by-reference

- client passes in an argument with normal syntax
 - function uses reference parameters with normal syntax
 - modifying a reference parameter modifies the caller’s argument

```cpp
void swap(int &x, int &y) {
    int tmp = x;
    x = y;
    y = tmp;
}

int main(int argc, char **argv) {
    int a = 5, b = 10;
    swap(a, b);
    cout << "a: " << a << " \ b: " << b << endl;
    return EXIT_SUCCESS;
}
```

Pass by reference.cc
const

count: cannot be changed
- used much more in C++ than in C

```cpp
void BrokenPrintSquare(const int &i) {
    i = i*i;  // Compiler error here!
    std::cout << i << std::endl;
}

int main(int argc, char **argv) {
    int j = 2;
    BrokenPrintSquare(j);
    return EXIT_SUCCESS;
}
```

brokenpassbyrefconst.cc
const

const’s syntax is confusing

```cpp
int main(int argc, char **argv) {
    int x = 5; // x is an int
    const int y = 6; // y is a (const int)
y++; // compiler error

    const int *z = &y; // z is a (variable pointer) to a (const int)
    *z += 1; // compiler error
    z++; // ok

    int *const w = &x; // w is a (const pointer) to a (variable int)
    *w += 1; // ok
    w++; // compiler error

    const int *const v = &x; // v is a (const pointer) to a (const int)
    *v += 1; // compiler error
    v++; // compiler error

    return EXIT_SUCCESS;
}
```

constmadness.cc
style guide tip

use const reference parameters to pass input values
- particularly for large values

use pointers to pass output parameters
- input parameters first, then output parameters last

```cpp
#include <cstdlib>

void CalcArea(const int &width, const int &height, int *const area) {
    *area = width * height;
}

int main(int argc, char **argv) {
    int w = 10, h = 20, a;
    CalcArea(w, h, &a);
    return EXIT_SUCCESS;
}
```
When to use references?

A stylistic choice
- not something mandated by language

Google C++ style guide suggests:
- input parameters:
 ‣ either use values (for primitive types like int)
 ‣ or use const references (for complex structs / object instances)
- output parameters
 ‣ use const pointers
virality of const

- OK to pass
 - a pointer to non-const
 - to a function that expects
 - a pointer to const

- not OK to pass
 - a pointer to a const
 - to a function that expects
 - a pointer to a non-const

#include <iostream>

void foo(const int *y) {
 std::cout << *y << std::endl;
}

void bar(int *y) {
 std::cout << *y << std::endl;
}

int main(int argc, char **argv) {
 const int a = 10;
 int b = 20;

 foo(&b); // OK
 bar(&a); // not OK

 return 0;
}
Classes

class declaration syntax (in a .h file)

class Name {
 private:
 members;
 public:
 members;
};

class member definition syntax (in a .cc file)

returntype classname::methodname(parameters) {
 statements;
}

You can name your .cc, .h file anything (unlike Java)

- typically name them Classname.cc, Classname.h
#ifndef POINT_H
#define POINT_H

class Point {
 public:
 Point(const int x, const int y); // constructor
 int get_x() const { return x_; } // inline member function
 int get_y() const { return y_; } // inline member function
 double Distance(const Point &p) const; // member function
 void SetLocation(const int x, const int y); // member functn

 private:
 int x_; // data member
 int y_; // data member
}; // class Point

#endif // POINT_H
```cpp
#include <cmath>
#include "Point.h"

Point::Point(const int x, const int y) {
    x_ = x;
    this->y_ = y; // "this->" is optional, unless names conflict
}

double Point::Distance(const Point &p) const {
    // We can access p’s x_ and y_ variables either through the
    // get_x(), get_y() accessor functions, or the x_, y_ private
    // member variables directly, since we're in a member
    // function of the same class.
    double distance = (x_ - p.get_x()) * (x_ - p.get_x());
    distance += (y_ - p.y_) * (y_ - p.y_);
    return sqrt(distance);
}

void Point::SetLocation(const int x, const int y) {
    x_ = x;
    y_ = y;
}
```
#include <iostream>
#include "Point.h"

using namespace std;

int main(int argc, char **argv)
{
 Point p1(1, 2); // stack allocate a new Point
 Point p2(4, 6); // stack allocate a new Point

 cout << "p1 is: (" << p1.get_x() << ", ";
 cout << p1.get_y() << ")" << endl;

 cout << "p2 is: (" << p2.get_x() << ", ";
 cout << p2.get_y() << ")" << endl;

 cout << "dist : " << p1.Distance(p2) << endl;
 return 0;
}
struct vs. class

in C

- a struct contains only fields
 ‣ cannot contain methods
 ‣ does not have public vs. private vs. protected

in C++

- struct and class are (nearly) the same
 ‣ both can contain methods
 ‣ both can have public vs. private vs. protected

- **struct**: default public, **class**: default private

- typical style convention: structs for simple bundles of data; classes for abstractions with data + functions
Exercise 1

Write a C++ program that:
- has a class representing a 3-dimensional point
- has the following methods:
 ‣ return the inner product of two 3d points
 ‣ return the distance between two 3d points
 ‣ accessors and mutators for the x, y, z coordinates
Exercise 2

Write a C++ program that:

- has a class representing a 3-dimensional box
 ‣ use your exercise 1 class representing 3d points to store the coordinates of the vertices that define it
 ‣ assume the box has right-angles only and its faces are parallel to the axes, so you only need two vertices to define it

- has the following methods:
 ‣ test if one box is inside another box
 ‣ return the volume of a box
 ‣ handles “<<”, “=”, and a copy constructor
 ‣ uses const in all the right places
See you on Friday!