Administrivia

HW4 due Wednesday night, 11 pm
- Usual late days (up to 2) apply if you still have any left

Second exam Friday in class
- Review in section Thursday
- Topic list and old exams on the web
 - Anything all quarter is possible, but likely biased toward 2nd half
- Course recap in class today
So what have we been doing for the last 10 9 weeks?
Course goals

Explore the gap between

- Intro: the computer is a magic appliance that runs programs
- CSE 351: the computer is a stupid appliance that executes really, really simple instructions (really fast)
Course map: 100,000 foot view

Operating System

- C application
- C standard library (glibc)

C++ application
- C++ STL / boost / standard library

Java application
- JRE

Hardware

- CPU
- memory
- storage
- network
- GPU
- clock
- audio
- radio
- peripherals

OS / app interface
(system calls)

HW/SW interface
(x86 + devices)
Goals

Skills

- Programming closer to the hardware: C/C++
- Disciplined design, testing, debugging

Knowledge

- OS interface and semantics, languages, some networking
- A deep(er) understanding of “the layer below”
 ‣ quiz: when is the data safely on disk after a write? Actually received over the network? How many copies are made along the way?
Main topics

C Programming, tools, and workflow

Memory management

System interfaces and services (files, etc.)

C++: the 800-lb gorilla of programming languages
- “better C” + classes + STL + smart pointers + ...

Networking basics: TCP/IP, sockets, ...

Drilling deeper...
The C/C++ Ecosystem

System layers: C/C++, libraries, operating system

Building programs

- cpp: #include, #ifndef, and all that
- compiler (cc1): source → .o
- loader (ld): .o + libraries → executable
Program execution

What’s a process?

- Address space
- Thread(s) of execution
- Environment (arguments, open files, …)
C language

Structure of C programs

- Header files and implementations; declaration vs definition
- Internal vs external linkage
- Standard types and operators (scalars including things like uint64_t, structs, arrays, typedef, etc.)
- Functions: defining, using, execution model
- Standard libraries and data structures (strings, streams, ...)
 - C standard library, system calls, and how they are connected
- Handling errors in a language without exception handling
 - return codes, errno, and friends

CSE333 lec 22 wrapup // 08-20-14 // Perkins
Memory

Object scope and lifetime (static, automatic, dynamic)

Pointers and associated operators (&, *, ->, [])
- Using pointers for call-by-reference as well as linked data

Dynamic memory allocation (malloc/free; new/delete)
- Who is responsible for dynamic memory & what happens if not done right (dangling pointers, memory leaks, ...)

Tools: debuggers (gdb), monitors (valgrind), ...
- Most important tool: thinking(!)
C++ (and C++11)

A “better C”
- Type-safe streams and memory mgmt (new, delete, delete[]), etc.

References and const

C with classes (and objects)
- Constructors, copy constructor, destructor, assignment

Subclasses and inheritance
- Dynamic vs static dispatch & why it matters, virtual functions, vtables
- Pure virtual functions and abstract classes

C++ casts - what are they and why so many (compared to C)?
Templates, STL, and smart ptrs

Templates: parameterized classes and functions
- How the idea is similar to Java generics and what’s different
- How C++ implements templates (expansion)

STL: basics = vector, list & map containers and iterators
- Copy semantics

Smart pointers: unique, shared, and weak
- Reference counting, resource management

Using class hierarchies with STL
- Pointer vs value semantics, assignment slicing
Networking

Layered protocol model, particularly TCP and IP
- What they do, how they are related, how they differ

Network addressing and protocols: IP addresses, DNS, IPv4, IPv6, ports

Application protocols: where HTTP fits in the scheme
Network Programming

Client side
1. get IP address / port
2. create socket
3. connect socket to server
4. read / write data
5. close socket

Server side
1. get IP address / port
2. create socket
3. bind socket to address / port
4. indicate that socket is a listener
5. accept connection from client
6. read / write data
7. close socket
Concurrency

Why?
- Better resource utilization
- Better throughput

Processes
- Heavyweight, isolated, created by cloning: fork()

Threads
- Lightweight, share address space, pthreads

Synchronization (particularly threads)
- What are the main issues?
Processes vs threads on one slide

- OS kernel [protected]
 - stack
 - shared libraries
 - heap (malloc/free)
 - read/write segment .data, .bss
 - read-only segment .text, .rodata

- SP
- PC

- Parent
 - fork

- Child

- OS kernel [protected]
 - stack
 - shared libraries
 - heap (malloc/free)
 - read/write segment .data, .bss
 - read-only segment .text, .rodata

- SP
- PC

- Parent
 - fork

- Child
Phew! That’s it!!

But that’s a lot!!!

Studying for the exam

- Review lecture slides, assignments, exercises
- Try some of the end-of-lecture problems for practice
- Look at old exams and topic list on the web
 - Try the old exam questions first, before looking at answers
- Study groups! Ask questions / trade ideas on the discussion board! Ask course staff questions
- The goal is learning and mastery
That’s it (almost)

But first, ...
This doesn’t happen without great help! Thanks!!
One more thing...

Course evals

- Constructive feedback (positive we hope, but negative when called for) is what helps us get better
- Please fill out online by Wednesday
Congratulations and good luck on the exam!!

You’ve learned a lot – go out and build great things!!!

See you Friday!