Version Control: Subversion

Colin Gordon
csgordon@cs.washington.edu

University of Washington

CSE333 Section 3, 4/14/11

Colin Gordon (University of Washington) Section 3: Version Control: Subversion CSE333 - Spring 2011 1/20

Today’s Topics

@ Version Control: What and Why
@ Intro to Subversion (a.k.a. svn)
@ Good Version Control Practices

Ask guestions any time!

Colin Gordon (University of Washington) Section 3: Version Control: Subversion CSE333 - Spring 2011 A0

Version Control

Version control is software that helps one or more people manage
multiple versions of a set of files

@ tracks snapshots of a whole set of files
@ guides sharing and merging of changes for multiple people

Colin Gordon (University of Washington) Section 3: Version Control: Subversion CSE333 - Spring 2011 3/20

What is Version Control Good For?

@ Reverting to an earlier snapshot if you break your current version
beyond repair
@ Looking at old versions

» See when a bug was introduced
» See how to undo broken changes

@ Track multiple directions of development together (e.g. stable and
cutting-edge releases, a main branch and a separate branch for
work on a new feature)

Colin Gordon (University of Washington) Section 3: Version Control: Subversion CSE333 - Spring 2011 4/20

Version Control Terminology

@ A saved copy of the files tracked by version control is called a
repository.
@ You can check out a copy of all the files in the repository.

@ A checked out copy of files that you can change is called your
working copy.

@ When you make changes that you would like to have saved as a
snapshot in the repository, you check in or commit your changes.

@ Can update your working copy to get changes other people have
committed to the repository since the last time you looked

Colin Gordon (University of Washington) Section 3: Version Control: Subversion CSE333 - Spring 2011 5/20

Two Types of Version Control

Centralized
@ One central repository

@ When someone commits changes from a working copy, they go to
the central repository immediately, visible to everyone upon sync

Distributed

@ Many respositories; essentially each person gets their own local
repository

@ Commits save changes in the local repository.

@ Can push and pull changes between different repositories; which
one is the “official” repository is simply by convention, not
enforced by the tool.

@ Some terminology has slightly different meanings...

Colin Gordon (University of Washington) Section 3: Version Control: Subversion CSE333 - Spring 2011 6/20

The History of Version Control Systems

@ 1982: RCS
» Only worked on individual files...
@ 1990: CVS

» Lots of strange, subtle, confusing behaviors... no
renaming/moving...

@ 2000: Subversion (SVN)
» Fixed lots of CVS’s problems, and added lots of new features

@ 2005: Distributed version control becomes popular
» Primarily because of Git and Mercurial

Colin Gordon (University of Washington) Section 3: Version Control: Subversion CSE333 - Spring 2011

Subversion

In this class, we’ll only talk about Subversion.
@ Roughly speaking, the current standard

@ Knowledge of using Subversion mostly carries over to other
version control systems

@ We won’t require you to use it, but we cannot emphasize enough
how strongly we recommend it.

@ If you use version control, you don’t have to use Subversion, but
the chances of us helping you with it are lower if you use
something else’.

@ Excellent online documentation: the “SVN Red Book”

» A real, published book on using Subversion, free online
» http://svnbook.red-bean.com

LColin is also familiar with Mercurical

Colin Gordon (University of Washington) Section 3: Version Control: Subversion CSE333 - Spring 2011 8/20

Creating a Subversion Repository

The main repository for Subversion is managed by a command called

svnadmin.

[csgordon@monarch:~/cse333]$ svnadmin create svnrepo
[csgordon@monarch:~/cse333]$ 1s

SVNrepo

[csgordon@monarch:~/cse333]$

Unless something awful happens, you'll probably never need to do
anything with svnadmin except create the repository. Don’t ever
directly change files inside the directory this creates; only the
svnadmin command knows what they mean!

9/20

Colin Gordon (University of Washington) Section 3: Version Control: Subversion CSE333 - Spring 2011

Checking Out a Repository (Locally)

To check out a working copy:

[csgordon@monarch:~/cse333]$ svn co \
file:///homes/gws/csgordon/cse333/svnrepo/ local

Checked out revision O.

[csgordon@monarch:~/cse333]8$ cd local

[csgordon@monarch: ~/cse333/1locall]$ 1s

[csgordon@monarch: ~/cse333/1locall $

Your checkout actually contains a hidden directory called . svn that
holds information about where the main repository Is, and previous
versions. Don’t change any files in this directory!

Colin Gordon (University of Washington) Section 3: Version Control: Subversion CSES333 - Spring 2011 10/ 20

Checking Out a Repository (Remotely)

You can do the same thing remotely, for example if you work at home
but keep your main repository in your CSE home directory?:

[csgordon@home: ~/cse333]$ svn co \
svn+ssh://csgordon@ravenna.cs.washington.edu/homes/.../cse333/svnrepo/ \
local

csgordon@ravenna.cs.washington.edu’s password:

Checked out revision O.

[csgordon@home: “/cse333]$ cd local

[csgordon@home: ~/cse333/1locall$ 1s

[csgordon@home: ~/cse333/1locall$

>CSE home directories are backed up, so this is highly recommended!

Colin Gordon (University of Washington) Section 3: Version Control: Subversion CSES333 - Spring 2011 11/20

Adding Flles

You must explicitly tell Subversion which files to track.

[csgordon@monarch:~/cse333/locall$ echo ’hello!’ > file.txt
[csgordon@monarch:~/cse333/1locall]$ cat file.txt

hello!
[csgordon@monarch:~/cse333/1locall$ svn add file.txt
A file.txt

[csgordon@monarch:~/cse333/1locall$

At this point, your working copy tracks the file, but it is not yet in the main repository.

Colin Gordon (University of Washington) Section 3: Version Control: Subversion CSES333 - Spring 2011 12 /20

Checking In

To share your local changes, you must commit them:

[csgordon@monarch:~/cse333/1locall$ svn commit -m "Added file.txt"
csgordon@ravenna.cs.washington.edu’s password:

Adding file.txt

Transmitting file data .

Committed revision 1.

[csgordon@monarch:~/cse333/locall$

You can omit the -m argument, the commit message, and some editor
will pop up where you can type one.

Colin Gordon (University of Washington) Section 3: Version Control: Subversion CSES333 - Spring 2011 13/20

Updating, Viewing the log

Maybe someone else has checked in a fix you need. Let’s get it:

[csgordon@monarch:~/cse333/1local]l$ svn update
csgordon@ravenna.cs.washington.edu’s password:
U file.txt

Updated to revision 2.
[csgordon@monarch:~/cse333/locall$

o
What did they do? Let’s find out:
[csgordon@monarch: ~/cse333/1local]l$ svn log -r HEAD
csgordon@ravenna.cs.washington.edu’s password:
r2 | csgordon | 2011-04-13 13:41:08 ~0700 (Ved, 13 Apr 2011) | 2 lines
modified file.txt
[cagordonenonarch:~/csed33/localld)

Try svn help log to see how to view other parts of the log.

Colin Gordon (University of Washington) Section 3: Version Control: Subversion CSES333 - Spring 2011 14/ 20

Checking Local Changes

Sometimes it's hard to remember what you've changed since last time
you checked in:

[csgordon@monarch: ~/cse333/locall$ vim file.txt
[csgordon@monarch: ~/cse333/local]l$ svn diff

Index: file.txt

--- file.txt (revision 2)
+++ file.txt (working copy)
@@ -1 +1,2 @@

hello there!

+blah blah blah
[csgordon@monarch:~/cse333/1locall$)

Section 3: Version Control: Subversion CSES333 - Spring 2011 15/ 20

Colin Gordon (University of Washington)

Merge Conflicts

Sometimes you try to push, but someone else has changed your files!

[csgordon@monarch:~/cse333/1locall$ svn commit
csgordon@ravenna.cs.washington.edu’s password:

Sending file.txt

Transmitting file data .svn: Commit failed (details follow):
svn: File ’/file.txt’ is out of date

svn: Your commit message was left in a temporary file:

svn: ’/homes/gws/csgordon/cse333/local/svn-commit . tmp’
[csgordon@monarch:~/cse333/1locall$

Now we need to merge their changes with ours...

Colin Gordon (University of Washington) Section 3: Version Control: Subversion CSES333 - Spring 2011 16/ 20

[csgordon@monarch:~/cse333/1local]l$ svn up

csgordon@ravenna.cs.washington.edu’s password:

Conflict discovered in ’file.txt’.

Select: (p) postpone, (df) diff-full, (e) edit,
(mc) mine-conflict, (tc) theirs-conflict,
(s) show all options:

v
Choosing edit will pop up an editor with a file like this:
hello there!
<<<<<<< .mine (what follows are your changes)
blah blah blah (your changes)
======= (divider)
ah-hah! I messed you up. (the conflicting changes)
>>>>>>> .r3 (end diff, the conflicting revision))

Edit the file to a final version, save the file, and exit the editor.

Colin Gordon (University of Washington) Section 3: Version Control: Subversion CSES333 - Spring 2011

Merging (Part 2)

Now subversion will ask if we resolved the file, want to try again, etc.

Select: (p) postpone, (df) diff-full, (e) edit, (r) resolved,
(mc) mine-conflict, (tc) theirs-conflict,
(s) show all optiomns: r

G file.txt

Updated to revision 3.

[csgordon@monarch:~/cse333/1locall$

If you later (e.g. after running tests) decide you goofed on the merge,
you can fix it before checking in.

Colin Gordon (University of Washington) Section 3: Version Control: Subversion CSES333 - Spring 2011 18/ 20

Sometimes you'll mess up badly enough you want to go back to an old
version:

Reverted ’file.txt’

[csgordon@monarch:~/cse333/locall$ svn revert file.txt
[csgordon@monarch: ~/cse333/1locall$ J

Now any local changes to file.txt are undone. So let's go back to nice,
simple, revision 1:

[csgordon@monarch:~/cse333/local]$ svn up -r 1
csgordon@ravenna.cs.washington.edu’s password:
U file.txt

Updated to revision 1.

[csgordon@monarch: ~/cse333/1local]l$ cat file.txt
hello!

[csgordon@monarch:~/cse333/1locall$

Colin Gordon (University of Washington) Section 3: Version Control: Subversion CSES333 - Spring 2011 19/20

Good Practices for Version Control

@ Never check in broken code where someone else would get it

@ Check In for one conceptual set of changes at a time
@ Make sure your commit messages explain what was changed and

why
» This makes it much easier to find the revision you're looking for

when you search the log!

CSE333 - Spring 2011 20/20

Colin Gordon (University of Washington) Section 3: Version Control: Subversion

	Version Control
	Subversion
	Good Practices

