
Version Control: Subversion

Colin Gordon
csgordon@cs.washington.edu

University of Washington

CSE333 Section 3, 4/14/11

Colin Gordon (University of Washington) Section 3: Version Control: Subversion CSE333 - Spring 2011 1 / 20

Today’s Topics

Version Control: What and Why

Intro to Subversion (a.k.a. svn)

Good Version Control Practices

Ask questions any time!

Colin Gordon (University of Washington) Section 3: Version Control: Subversion CSE333 - Spring 2011 2 / 20

Version Control

Version control is software that helps one or more people manage
multiple versions of a set of files

tracks snapshots of a whole set of files

guides sharing and merging of changes for multiple people

Colin Gordon (University of Washington) Section 3: Version Control: Subversion CSE333 - Spring 2011 3 / 20

What is Version Control Good For?

Reverting to an earlier snapshot if you break your current version
beyond repair
Looking at old versions

◮ See when a bug was introduced
◮ See how to undo broken changes

Track multiple directions of development together (e.g. stable and
cutting-edge releases, a main branch and a separate branch for
work on a new feature)

Colin Gordon (University of Washington) Section 3: Version Control: Subversion CSE333 - Spring 2011 4 / 20

Version Control Terminology

A saved copy of the files tracked by version control is called a
repository.

You can check out a copy of all the files in the repository.

A checked out copy of files that you can change is called your
working copy.

When you make changes that you would like to have saved as a
snapshot in the repository, you check in or commit your changes.

Can update your working copy to get changes other people have
committed to the repository since the last time you looked

Colin Gordon (University of Washington) Section 3: Version Control: Subversion CSE333 - Spring 2011 5 / 20

Two Types of Version Control

Centralized
One central repository

When someone commits changes from a working copy, they go to
the central repository immediately, visible to everyone upon sync

Distributed
Many respositories; essentially each person gets their own local
repository

Commits save changes in the local repository.

Can push and pull changes between different repositories; which
one is the “official” repository is simply by convention, not
enforced by the tool.

Some terminology has slightly different meanings...

Colin Gordon (University of Washington) Section 3: Version Control: Subversion CSE333 - Spring 2011 6 / 20

The History of Version Control Systems

1982: RCS
◮ Only worked on individual files...

1990: CVS
◮ Lots of strange, subtle, confusing behaviors... no

renaming/moving...

2000: Subversion (SVN)
◮ Fixed lots of CVS’s problems, and added lots of new features

2005: Distributed version control becomes popular
◮ Primarily because of Git and Mercurial

Colin Gordon (University of Washington) Section 3: Version Control: Subversion CSE333 - Spring 2011 7 / 20

Subversion

In this class, we’ll only talk about Subversion.

Roughly speaking, the current standard

Knowledge of using Subversion mostly carries over to other
version control systems

We won’t require you to use it, but we cannot emphasize enough
how strongly we recommend it.

If you use version control, you don’t have to use Subversion, but
the chances of us helping you with it are lower if you use
something else1.
Excellent online documentation: the “SVN Red Book”

◮ A real, published book on using Subversion, free online
◮ http://svnbook.red-bean.com

1Colin is also familiar with Mercurical
Colin Gordon (University of Washington) Section 3: Version Control: Subversion CSE333 - Spring 2011 8 / 20

Creating a Subversion Repository

The main repository for Subversion is managed by a command called
svnadmin.

[csgordon@monarch:~/cse333]$ svnadmin create svnrepo

[csgordon@monarch:~/cse333]$ ls

svnrepo

[csgordon@monarch:~/cse333]$

Unless something awful happens, you’ll probably never need to do
anything with svnadmin except create the repository. Don’t ever
directly change files inside the directory this creates; only the
svnadmin command knows what they mean!

Colin Gordon (University of Washington) Section 3: Version Control: Subversion CSE333 - Spring 2011 9 / 20

Checking Out a Repository (Locally)

To check out a working copy:

[csgordon@monarch:~/cse333]$ svn co \

file:///homes/gws/csgordon/cse333/svnrepo/ local

Checked out revision 0.

[csgordon@monarch:~/cse333]$ cd local

[csgordon@monarch:~/cse333/local]$ ls

[csgordon@monarch:~/cse333/local]$

Your checkout actually contains a hidden directory called .svn that
holds information about where the main repository is, and previous
versions. Don’t change any files in this directory!

Colin Gordon (University of Washington) Section 3: Version Control: Subversion CSE333 - Spring 2011 10 / 20

Checking Out a Repository (Remotely)

You can do the same thing remotely, for example if you work at home
but keep your main repository in your CSE home directory2:

[csgordon@home:~/cse333]$ svn co \

svn+ssh://csgordon@ravenna.cs.washington.edu/homes/.../cse333/svnrepo/ \

local

csgordon@ravenna.cs.washington.edu’s password:

Checked out revision 0.

[csgordon@home:~/cse333]$ cd local

[csgordon@home:~/cse333/local]$ ls

[csgordon@home:~/cse333/local]$

2CSE home directories are backed up, so this is highly recommended!
Colin Gordon (University of Washington) Section 3: Version Control: Subversion CSE333 - Spring 2011 11 / 20

Adding Files

You must explicitly tell Subversion which files to track.

[csgordon@monarch:~/cse333/local]$ echo ’hello!’ > file.txt

[csgordon@monarch:~/cse333/local]$ cat file.txt

hello!

[csgordon@monarch:~/cse333/local]$ svn add file.txt

A file.txt

[csgordon@monarch:~/cse333/local]$

At this point, your working copy tracks the file, but it is not yet in the main repository.

Colin Gordon (University of Washington) Section 3: Version Control: Subversion CSE333 - Spring 2011 12 / 20

Checking In

To share your local changes, you must commit them:

[csgordon@monarch:~/cse333/local]$ svn commit -m "Added file.txt"

csgordon@ravenna.cs.washington.edu’s password:

Adding file.txt

Transmitting file data .

Committed revision 1.

[csgordon@monarch:~/cse333/local]$

You can omit the -m argument, the commit message, and some editor
will pop up where you can type one.

Colin Gordon (University of Washington) Section 3: Version Control: Subversion CSE333 - Spring 2011 13 / 20

Updating, Viewing the log

Maybe someone else has checked in a fix you need. Let’s get it:

[csgordon@monarch:~/cse333/local]$ svn update

csgordon@ravenna.cs.washington.edu’s password:

U file.txt

Updated to revision 2.

[csgordon@monarch:~/cse333/local]$

What did they do? Let’s find out:

[csgordon@monarch:~/cse333/local]$ svn log -r HEAD

csgordon@ravenna.cs.washington.edu’s password:

--

r2 | csgordon | 2011-04-13 13:41:08 -0700 (Wed, 13 Apr 2011) | 2 lines

modified file.txt

--

[csgordon@monarch:~/cse333/local]$

Try svn help log to see how to view other parts of the log.

Colin Gordon (University of Washington) Section 3: Version Control: Subversion CSE333 - Spring 2011 14 / 20

Checking Local Changes

Sometimes it’s hard to remember what you’ve changed since last time
you checked in:

[csgordon@monarch:~/cse333/local]$ vim file.txt

[csgordon@monarch:~/cse333/local]$ svn diff

Index: file.txt

===

--- file.txt (revision 2)

+++ file.txt (working copy)

@@ -1 +1,2 @@

hello there!

+blah blah blah

[csgordon@monarch:~/cse333/local]$

Colin Gordon (University of Washington) Section 3: Version Control: Subversion CSE333 - Spring 2011 15 / 20

Merge Conflicts

Sometimes you try to push, but someone else has changed your files!

[csgordon@monarch:~/cse333/local]$ svn commit

csgordon@ravenna.cs.washington.edu’s password:

Sending file.txt

Transmitting file data .svn: Commit failed (details follow):

svn: File ’/file.txt’ is out of date

svn: Your commit message was left in a temporary file:

svn: ’/homes/gws/csgordon/cse333/local/svn-commit.tmp’

[csgordon@monarch:~/cse333/local]$

Now we need to merge their changes with ours...

Colin Gordon (University of Washington) Section 3: Version Control: Subversion CSE333 - Spring 2011 16 / 20

Merging

[csgordon@monarch:~/cse333/local]$ svn up

csgordon@ravenna.cs.washington.edu’s password:

Conflict discovered in ’file.txt’.

Select: (p) postpone, (df) diff-full, (e) edit,

(mc) mine-conflict, (tc) theirs-conflict,

(s) show all options:

Choosing edit will pop up an editor with a file like this:

hello there!

<<<<<<< .mine (what follows are your changes)

blah blah blah (your changes)

======= (divider)

ah-hah! I messed you up. (the conflicting changes)

>>>>>>> .r3 (end diff, the conflicting revision)

Edit the file to a final version, save the file, and exit the editor.

Colin Gordon (University of Washington) Section 3: Version Control: Subversion CSE333 - Spring 2011 17 / 20

Merging (Part 2)

Now subversion will ask if we resolved the file, want to try again, etc.

Select: (p) postpone, (df) diff-full, (e) edit, (r) resolved,

(mc) mine-conflict, (tc) theirs-conflict,

(s) show all options: r

G file.txt

Updated to revision 3.

[csgordon@monarch:~/cse333/local]$

If you later (e.g. after running tests) decide you goofed on the merge,
you can fix it before checking in.

Colin Gordon (University of Washington) Section 3: Version Control: Subversion CSE333 - Spring 2011 18 / 20

Reverting

Sometimes you’ll mess up badly enough you want to go back to an old
version:

[csgordon@monarch:~/cse333/local]$ svn revert file.txt

Reverted ’file.txt’

[csgordon@monarch:~/cse333/local]$

Now any local changes to file.txt are undone. So let’s go back to nice,
simple, revision 1:

[csgordon@monarch:~/cse333/local]$ svn up -r 1

csgordon@ravenna.cs.washington.edu’s password:

U file.txt

Updated to revision 1.

[csgordon@monarch:~/cse333/local]$ cat file.txt

hello!

[csgordon@monarch:~/cse333/local]$

Colin Gordon (University of Washington) Section 3: Version Control: Subversion CSE333 - Spring 2011 19 / 20

Good Practices for Version Control

Never check in broken code where someone else would get it

Check in for one conceptual set of changes at a time
Make sure your commit messages explain what was changed and
why

◮ This makes it much easier to find the revision you’re looking for
when you search the log!

Colin Gordon (University of Washington) Section 3: Version Control: Subversion CSE333 - Spring 2011 20 / 20

	Version Control
	Subversion
	Good Practices

