CSE 332 Winter 2024
Lecture 8: AVL Trees

Nathan Brunelle
http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Dictionary (Map) ADT

(.

 Contents:

 Sets of key+value pairs
* Keys must be comparable

* Operations: /
. inser </
1nser
* Adds the {key,value) pair into the dictionary

 If the key already has a value, overwrite the old value
* Consequence: Keys cannot be repeated

 find(key)
/ﬁ * Returns the value associated with the given key

-_?Ielete(key)
 Remove the key (and its associated value)

Less Nalve attempts

* Binary Search Trees (Friday)

* Tries (Project)

* AVL Trees (Today)

* B-Trees (this week)

* HashTables (next week)

* Red-Black Trees (not included in this course)
* Splay Trees (not included in this course)

Dictionary Data Structures

Data Structure Time toinsert | Time to find Time to delete

Unsorted Array O(n) O(n) O(n) 6
Unsorted Linked List O(n) O(n) O(n)
Sorted Array O(n) O(logn) O(n)
Sorted Linked List O(n) O(n) O(n)
/ Binary Search Tree M/ % Z@(n)

AVL Tree O(logn) O(logn) O(logn)

-
ARV

Binary Search Tree a‘
O

* Binary Tree

* Definition:
* Every node has at mos hildren ° a

e Order Property
* All keys in the left subtree are smaller than the root
* All keys in the right subtree are larger than the root
* Apply recursively

* Why?

. Makeswmg'q'uicker /
* Worst case: tree’s height /

o)

Find Operation (recursive)

find(key, root){
if (root == Null){
return Null;
{
if (key == root.key){
return root.value;

}
if (key < root.key){

return find(key, root.left);

}
if (key > root.key){

return find(key, root.right);
}

return Null;

Find Operation (iterative)

find(key, root){
while (root != Null && key !=root.key){
if (key < root.key){
root = root.left;

}
else if (key > root.key){

root = root.right;

}
}
if (root == Null){
return Null;
}

return root.value;

m Operation (iterative)

insert(key, value, root){
- L

————

' ot == | this: = de - :

parent = Null; S
while (root 1= Null && key != root.key){

parent = root;
if (ke.y < root.key){ root = root.left; }. > . 7
else if (key > root.key){ root = root.right; } / ',
) Ty
if (root != Null){ root.value = value; }
else if (key < parent.key){ parent.left = new Node(key, value); })/ﬁ /&
else{ parent.right = new Node (key, value); } N (

} Note: Insert happens only at the leaves!

—_—

Delete Operation (iterative)

delete(key, root){ 4\
while (root != Null && key != root.key){
if (key < root.key){ root = root.left; }
else if (key > root.key){ root = root.right; }

}

if (root == Null){ return; }
// Now root is the node to delete, what happens next?

* 0 Children (i.e. it’s a Ieaf)/ml/’/[/é\’/
TN S < by

» 1Child A0 1 N\ e |

—

), L 1
e 2 Children ~ (L\/ /é AR aban

(o)
e
o

Finding the Max and Min

maxNode(root){
e Max of a BST: if (root == Null){ return Null; }
. . while (root.right != Null){
* Right-most Thing root = root.right; °
}

return root;

* Min of a BST:
* Left-most Thing

minNode(root){
if (root == Null){ return Null; }
while (root.left |= Null){
root = root.left;

}

return root;

Delete Operation (iterative)

delete(key, root){

while (root != Null && key != root.key){
if (key < root.key){ root = root.left; } 0
else if (key > root.key){ root = root.right; }

} O

if (root == Null){ return; }

if (root has no children){
make parent point to Null Instead;

}

if (root has one child){
make parent point to that child instead;

}

if (root has two children){
make parent point to either the max from the left or min from the right

Improving the worst case

* How can we get a better worst case running time?

/\/,(;%a\m

ZB/aIanic?/’ Binary Search Trees

* We get better running times by having “shorter” trees
* Trees get tall due to them being “sparse” (many one-child nodes)
* |dea: modify how we insert/delete to keep the tree more “full”

dea 1: Both Subtrees of Root have same
Nodes]>/1(/7/ | (S o ¢
7O L e

2) Sane e Sy Coa

dea 2: Both Subtrees of Root have same
height (7

O S N V/ﬂ/gf(égi

|[dea 3: Both Subtrees,of every Node have
same Node%s \/

R Z
) D N

|dea 4: Both Subtrees of every Node have

same height @ [

* A Binary Search tree that maintains that the left and right subtrees of
\Qem\i have\heights}that differ by at most one.
eigh left subtree and height of right subtree off by at most 1
* Not too weak (ensures trees are short)

* Not too strongéwbrks for any number of nodes)!

-[|dea of AVL Tree:

* When you T\Lsit]d/_eletipodes, if tree is Zou/tof balance” (hen modify the tree
-’\

e Modification = !rotation”

Using AVL Trees

 Each node has:
* Key

Key = 9 g
Value = “hellg”

Height =3

Left = Node 3
e NG
* Height

e Left child °
* Right child ‘

m iINto an AVL Tree

 Starts out the same way as BST:
. /_’_\
* “Find’l where the new node should go

e Putitin theright place (it will be a leaf)
Itwill be a leal)
* Next check the balance

/\° If the tree is still balanced, you’re done!
* Otherwise we need to do rotations

Insert Example

D
Insert Example () ﬁ/\
g

e

Pl

&

Not Balanced!

Solution: rotate the whole tree to the right

Balanced!

Right Rotation

-

* Ma
* Ma
* Ma

Ke t
e t

Ke t

ne left child the new root
ne old root the right child of the new

ne new root’s right subtree the old root’s left subtree

h+1

Right
Rotation

Insert Example

Not Balanced!

Solution: rotate the deepest imbalance to the left

Balanced!

Left Rotation

* Make the right child the new root
* Make the old root the left child of the new

* Make the new root’s left subtree the old root’s right subtree

h+3

h+ 2

h+1

Left
Rotation

Insertion Story So Far

» After insertion, update the heights of the node’s ancestors
* Check for imbalance

* If there’s imbalance then at the deepest root of imbalance

* If the left subtree was deeper then rotate right This is incomplete!

i Th
* If the right subtree was deeper then rotate left Wheerfeatﬁssg?eir‘:atsfvzrkl

= = -

Insertion Story So Far

» After insertion, update the heights of the node’s ancestors
* Check for imbalance

* If there’s imbalance then at the deepest root of imbalance:
e Case LL: If we inserted in the left subtree of the left child then rotate right
* Case RR: If we inserted in the right subtree of the right child then rotate left
* Case LR: If we inserted into the right subtree of the left child then ???
e Case RL: If we inserted into the left subtree of the right child then ?7??

Cases LR and RL require 2
rotations!

Case LR

* From “root” of the deepest imbalance:

* Rotate left at the left child
* Rotate right at the root

Rotate Left
a at5

Rotate

Right at 9

©

Case LR in General

* Imbalance caused by inserting in the left child’s right subtree
* Rotate left at the left child

* Rotate right at the imbalanced node
h+3

Rotate
Right at

Rotate
Left at

Case RL in General

* Imbalance caused by inserting in the right child’s left subtree
* Rotate right at the right child

 Rotate left at the imbalanced node
h+3

Rotate Rotate
Right at Left at

Insert Summary

e After a BST insertion, update the heights of the node’s ancestors
* Check for imbalance

* If there’s imbalance then at the deepest root of imbalance:
e Case LL: If we inserted in the left subtree of the left child then: rotate right
e Case RR: If we inserted in the right subtree of the right child then: rotate left

* Case LR: If we inserted into the right subtree of the left child then: rotate left
at the left child and then rotate right at the root

* Case RL: If we inserted into the left subtree of the right child then: rotate
right at the right child and then rotate left at the root

	Slide 1: CSE 332 Winter 2024 Lecture 8: AVL Trees
	Slide 2: Dictionary (Map) ADT
	Slide 3: Less Naïve attempts
	Slide 4: Dictionary Data Structures
	Slide 5: Binary Search Tree
	Slide 6: Find Operation (recursive)
	Slide 7: Find Operation (iterative)
	Slide 8: Insert Operation (iterative)
	Slide 9
	Slide 10: Delete Operation (iterative)
	Slide 11: Delete – 3 Cases
	Slide 12: Finding the Max and Min
	Slide 13: Delete Operation (iterative)
	Slide 14: Improving the worst case
	Slide 15: “Balanced” Binary Search Trees
	Slide 16: Idea 1: Both Subtrees of Root have same # Nodes
	Slide 17: Idea 2: Both Subtrees of Root have same height
	Slide 18: Idea 3: Both Subtrees of every Node have same # Nodes
	Slide 19: Idea 4: Both Subtrees of every Node have same height
	Slide 20: AVL Tree
	Slide 21: Is it an AVL Tree?
	Slide 22: Using AVL Trees
	Slide 23: Inserting into an AVL Tree
	Slide 24: Insert Example
	Slide 25: Insert Example
	Slide 26: Not Balanced!
	Slide 27: Balanced!
	Slide 28: Right Rotation
	Slide 29: Insert Example
	Slide 30: Not Balanced!
	Slide 31: Balanced!
	Slide 32: Left Rotation
	Slide 33: Insertion Story So Far
	Slide 34: Insertion Story So Far
	Slide 35: Case LR
	Slide 36: Case LR in General
	Slide 37: Case RL in General
	Slide 38: Insert Summary

