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Warm Up: Tree Method
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Warm Up: Which is better?

Both of the following build a binary heap within an unordered array.
Which is better?

Parents where Heap
Property is Violated

buildHeapDown(arr){
for(int i = arr.length; i>0; i--){
percolateDown(arr, i);
}
}

buildHeapUp(arr){
for(inti = 0; i<arr.length; i++){ 7 8 9
percolateUp(arr, i);

} 516|103 |15 8 |7 |14]| 2 | 1
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Dictionary (Map) ADT

 Contents:

 Sets of key+value pairs
* Keys must be comparable

* Operations:

* insert(key, value)
* Adds the (key,value) pair into the dictionary

 If the key already has a value, overwrite the old value
* Consequence: Keys cannot be repeated

 find(key)
* Returns the value associated with the given key

» delete(key)

 Remove the key (and its associated value)



Nalve attempts

Data Structure Time to find Time to delete

Unsorted Array O(n) O(n) O(n)
Unsorted Linked List O(n) O(n) O(n)
Sorted Array O(n) O(logn) O(n)

Sorted Linked List O(n) O(n) O(n)



Less Nalve attempts

* Binary Search Trees (today)

* Tries (Project)

* AVL Trees (next week)

* B-Trees (next week)

 HashTables (week after)

* Red-Black Trees (not included in this course)
* Splay Trees (not included in this course)



Nalve attempts

Data Structure Time to find Time to delete

Unsorted Array O(n) O(n) O(n)
Unsorted Linked List O(n) O(n) O(n)
Sorted Array O(n) O(logn) O(n)
Sorted Linked List O(n) O(n) O(n)
Binary Search Tree (W.C.) O(n) O(n) O(n)
Binary Search Tree O(logn) O(logn) O(logn)

(average)



Tree Height

treeHeight(root){
height = 0O;
if (root.left != Null){
height = max(height, treeHeight(root.left));
}
if (root.right != Null){
height = max(height, treeHeight(root.right));
}
return height;



More Tree “Vocab” 6

* Traversal: 0 °

* An algorithm for “visiting/processing” every node in a tree
* Pre-Order Traversal: Q G

* Root, Left Subtree, Right Subtree

* In-Order Traversal:
* Left Subtree, Root, Right Subtree

e Post-Order Traversal
* Left Subtree, Right Subtree, Root



Name that Traversall

AorderTraversal(root){ BorderTraversal(root){ CorderTraversal(root){

if (root.left != Null){ process(root); if (root.left 1= Null){
process(root.left); if (root.left != Null){ process(root.left);

} process(root.left); }

if (root.right != Null){ } process(root)
process(root.right); if (root.right != Null){ if (root.right != Null){

} process(root.right); process(root.right);

process(root); } }



Binary Search Tree

* Binary Tree
e Definition:

e Order Property
* All keys in the left subtree are smaller than the root
* All keys in the right subtree are larger than the root

 Why?



Are these BSTs? ° @




Find Operation (recursive)

find(key, root){
if (root == Null){
return Null;
{
if (key == root.key){
return root.value;
}
if (key < root.key){
return find(key, root.left);
}
if (key > root.key){
return find(key, root.right);
}

return Null;



Find Operation (iterative)

find(key, root){
while (root != Null && key !=root.key){
if (key < root.key){
root = root.left;

}
else if (key > root.key){

root = root.right;

}
}
if (root == Null){
return Null;
}

return root.value;



Insert Operation (iterative) a @

insert(key, value, root){

if (root == Null){ this.root = new Node(key, value); } 0 6 e

parent = Null;
while (root != Null && key != root.key){ °
parent = root;
if (key < root.key){ root = root.left; }
else if (key > root.key){ root = root.right; }
}
if (root != Null){ root.value = value; }
else if (key < parent.key){ parent.left = new Node(key, value); }
else{ parent.right = new Node (key, value); }

} Note: Insert happens only at the leaves!






Delete Operation (iterative) 60@

delete(key, root){

while (root != Null && key != root.key){ G 6 e
if (key < root.key){ root = root.left; } ° ° 0

else if (key > root.key){ root = root.right; }
}

if (root == Null){ return; }
// Now root is the node to delete, what happens next?



Delete — 3 Cases

e O Children (i.e. it’s a leaf)

* 1 Child

e 2 Children



Finding the Max and Min 60@

maxNode(root){
e Max Of 3 BST: if (root == Null){ return Null; } e e
. ' . while (root.right != Null){
° nght-mOSt Th|ng root = root.right;
} OO0
return root;

* Min of a BST:
* Left-most Thing

minNode(root){
if (root == Null){ return Null; }
while (root.left |= Null){
root = root.left;

}

return root;



Delete Operation (iterative)

delete(key, root){

while (root != Null && key != root.key){
if (key < root.key){ root = root.left; } 0
else if (key > root.key){ root = root.right; }

} O

if (root == Null){ return; }

if (root has no children){
make parent point to Null Instead;

}

if (root has one child){
make parent point to that child instead;

}

if (root has two children){
make parent point to either the max from the left or min from the right



Worst Case Analysis

* For each of Find, insert, Delete:
* Worst case running time matches height of the tree

 What is the maximum height of a BST with n nodes?



Improving the worst case

* How can we get a better worst case running time?



“Balanced” Binary Search Trees

* We get better running times by having “shorter” trees
* Trees get tall due to them being “sparse” (many one-child nodes)
* |dea: modify how we insert/delete to keep the tree more “full”



dea 1: Both Subtrees of Root have same
Nodes




dea 2: Both Subtrees of Root have same
neight




|dea 3: Both Subtrees of every Node have
same # Nodes




|dea 4: Both Subtrees of every Node have
same height



Teaser: AVL Tree

* A Binary Search tree that maintains that the left and right subtrees of
every node have heights that differ by at most one.
* Not too weak (ensures trees are short)
* Not too strong (works for any number of nodes)
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