CSE 332 Winter 2024
Lecture 6: Priority Queues and
Recurrences

Nathan Brunelle
http://www.cs.uw.edu/332



http://www.cs.uw.edu/332

ADT: Priority Queue

e What is it?

* A collection of items and their (&io@
 Allows quick access/removal to the riority” thing
 What Operations do we need? éf\/

*_insert(item, priority)
/7 * Add a new item to the PQ with indicated priority
e Usually, smaller priority value means more important
o deleteMin
* Remove and return the “top priority” item from the queue
* |s_empty
* Indicate whether or not there are items still on the queue

* Note: the “priority” value can be any type/class so long as it’s comparable
(i.e. you can use “<“ or “compareTo” with it)




Thinking through implementations

Data Structure Worst case time to insert Worst case time to deleteMin
\__2
(Orsorted

ed Linked List 0(1) O(n)
Sorted Array O(n) O(n)
Sorted Linked List O(n) \& 0(1) °
Binary Search Tree O(n) O(n)
Binary Heap O(logn) O(logn)

7 wa

Note: Assume we know the maximum size of the PQ in advance



Trees for Heaps

* Binary Trees:
* The branching factor is 2

* Every node has < 2 children
= o

* Complete Tree:

* All “layers” are full, except the bottom
* Bottom layer filled left-to-right _—




(Min) Heap Data Structure

R

* Keep items in a complete binary tree

* Maintain the ”(Min)ﬁp Property[’ of the tree
e Every node’s priority is < its children’s priority
 Max Heap Property: every node’s priority is = its children




Representing a Heap 13 |2)a|7|s]6|5]|09

0 1 2 3 4 5 6 7/ 8 9
* Every complete binary tree with the same \/\/\J
number of nodes uses the same positions

and edges

e Use an array to represent the heap
* Index of root:

L
e Parent of node i: L;J

e Left child of node i: C/

* Right child of node i: §c NI \
e Location of the leaves:




Representing a Heap 13 |2)a|7|s]6|5]|09

* Every complete binary tree with the same
number of nodes uses the same positions
and edges

e Use an array to represent the heap

* Index of root:
* Parent of node l e
e Left child of node L H

* Right child of node i:

e Location of the leaves: !




Representing a Heap 13 |2)a|7|s]6|5]|09

0 1 2 3 4 5 6 7/ 8
* Every complete binary tree with the same k J
number of nodes uses the same positions
and edges

e Use an array to represent the heap
* Index of root:

« Parent of node i/ -] A~
/

e Left child of node-t:
* Right child of node i:

e Location of the leaves:




Insert Psuedocode 1 (3] 2]a|7|5|6]|5]o9

insert(item){

if(size == arr.length — 1){resize();}

Size++;

J




insert(item){
put item in the “next open” spot (keep tree complete)
while (item.priority < parent(item).priority){
swap item with parent



H | t G
eap Inser
(2 (2]
O ONROENO

insert(item){
put item in the “next open” spot (keep tree complete)
while (item.priority < parent(item).priority){
swap item with parent



H | t G
eap Inser
(2 (2]
0 ® O &

insert(item){
put item in the “next open” spot (keep tree complete)

while (item.priority < parent(item).priority){
swap item with parent — Percolate Up




Heap Insert
@ ©
OO0

put item in the “next open” spot (keep tree complete)

0

insert(item){

while (item.priority < parent(item).priority){

swap item with parent — PercolateUp <& —
- W h
\ —\




H | t ’
eap Inser
() (2]
ONNONROENO

insert(item){
put item in the “next open” spot (keep tree complete)
while (item.priority < parent(item).priority){
swap item with parent



Heap deleteMin

deleteMin(){
min = root
br = bottom-right item
move br to the root
while(br > either of its children){
swap br with its smallest child

}

return min




Heap deleteMin

deleteMin(){
min = root
br = bottom-right item
move br to the root
while(br > either of its children){
swap br with its smallest child

}

return min




Heap deleteMin

deleteMin(){
min = root
br = bottom-right item
move br to the root
while(br > either of its children){
swap br with its smallest child  — pgrcolate Down

}

return min



Heap deleteMin

deleteMin(){
min = root
br = bottom-right item
move br to the root
while(br > either of its children){
swap br with its smallest child  — pgrcolate Down

}

return min



deleteMin(){
min = root G g

br = bottom-right item

move br to the root

while(br > either of its children){
swap br with its smallest child

}

return min



Percolate Hp and Down (for a Min Heap)

— —_
e Goal: restore the “Heap Property”
L - |

* Percolate Up:

\

* Take a node that may be smaIIer than a parent repeatedly swap with a parent
until it is larger than its parent

. Percolate/own;
* Take a node that may be larger than one of its children, repeatedly swap with
smallest child until both children are larger —

* Worst case running time of each:

* O(logn)
._/



Percolate Up L Ve x

percolateUp(int i){
int parent =i/2; \\ index of parent
ltem val = arr[i]; \\ value at current location
while(i > 1 && arr[i].priority < arr[parent].priority){ \\ until location is root or heap property holds
arr[i] = arr[parent]; \\ move parent value to this location
arr[parent] = val; \\ put current value into parent’s location
i = parent; \\ make current location the parent

parent =i/2; \\ update new parent



DeleteMin Psuedocode

deleteMin(){
theMin = arr[1];
arr[1] = arr[size];
Size--;
percolateDown(1);
return theMin;



Percolate Down

percolateDown(int i){
int left =i*2; \\ index of left child
int right =i*2+1; \\ index of right child
ltem val = arr[i]; \\ value at location
while(left <=size){ \\ until location is leaf
int toSwap = right;
if(right > size | | arr[left].priority < arr[right] .priority){ \\ if there is no right child or if left child is smaller
toSwap = left; \\ swap with left
}\\ now toSwap has the smaller of left/right, or left if right does not exist
if (arr[toSwap] .priority < val.priority){ \\ if the smaller child is less than the current value
arr[i] = arr[toSwap];
arr[toSwap] = val; \\ swap parent with smaller child
i = toSwap; \\ update current node to be smaller child
left = i*2;
right = i*2+1;
}

else{ return;} \\ if we don’t swap, then heap property holds



Other Operations 7) — /z

* Increase Key
SN—

~+ Given the index of an item in the PQ, make its priority value larger
e Min Heap: Then percolate down

. X Heap: Then per‘cﬁup

* Decrease Key

——

* Given the index of an item in the PQ, make its priority value smaller
* Min Heap: Then percolate up

* Max Heap: Then percolate down 3
* Remove %
e Given the item at the given index from the PQ




\(h /C+7‘( /

LBmary Search

search(value, sortedArr){ CZ‘RJ
return helper(value, sortedArr, O, sortedArr.length);

}
helper(value, arr, IW){ y
df (low == high){ return false; }/ —— L

@;(hlghitcmu,zf 4
( if arr[mld lue {return t%,},4

if (arr mi ]< lue){ returr(hglgwalue arr, mid+1, high);/}
eIse{return elper(value, arr, low, mldg }
) ' T2 )
2




Analysis of Recursive Algorithms

e Overall structure of recursion:
Do some non-recursive “work” <—
* Do one or more recursive calls on some portion of your input Q
e Do some more non-recursive “work” @
e Repeat until you reach a base case <——

* Running time: T(n) = T(p;) + T(py) + -+ T(py) + f(n)
* The time it takes to run the algorithm on an input of size n is:
 The sum of how long it takes to run the same algorithm on each smaller input

e Plus the total amount of non-recursive work done at that step

e Usually:
« T(n) =a-T(§)+f(n)

* Called “divide and conquer”
*T(m) =T —c)+ f(n)

e Called “chip and conquer”




How Efficient Is It?

T(n) = “cost” of running the entire

L_l(ﬂ) :L,l_l-l_ T (ED algorithm on an array of length n
* Base casew_il)

27



Let’s Solve the Recurrence! //m J/>Z/7\/ )

__ Substitute until T(1)

So log, n/steps




Recursive Linear Search

search(value, list){

if(list.isEmpty()){
return false; 4
{

if (value == list[0]){

e ——

return ;

}

return search(value, list); /



Unrolling Method

* Repeatedly substitute the recursive part of the recurrence
T =T -D+e |

*Tn)=T(n—-2)+c+c
eT(n)=T(n—3)+c+c+c

eT(n)=c+c+c+--+c g;
—* How many c’s? /\//) (/7 )




T)=C+27(5) —r

Recursive List Summation

sum(list){ \‘ﬂ\/

return sum_helper(list, O, list.size); \ /
} e
sum_helper(list, low, high){
if (flow == high){ return O; }
if (low == high-1){ return list[low]; }

middle = (high+low)/2;

return sum_helper(list, low, middle) +thm;helper(list, middle, high);
) = /




Loop Unrolling Method

-T(n)=2{/(§)(+c
xﬁz 7(\:?/ ﬂ:\\) I

mTIL) A3



Loop Unrolling Method

-T(n)=2T(§)+c
-T(n)=2(2T(g)+c)+c=4TG)+36
-T(n)=4(2T ™) ¢ ¢ +3c=8T(§)+ﬁ

—_—

e ..afteri — 1 substitutions
e T(n) =Ei7’,( )+(2‘—1)c ,/\\
T (;) T(1)wheni = log2 n
e T(n) = 2l°g27(1) + (Zlogzn 1)c =n-cyp+cn—c=0(n)




Tree Method

Red box represents a
problem instance

Blue value represents
time spent at that level of
recursion

T(n) = ZT(

n

C

n
2

/\

n/2

C

—

n/4

C

n/4

AN

I

)+

n/2 ¢

.

n/4 ° n/4
VAN
1 1 11

— 2% . ¢ work per level

>log, 1 levels
of recursion

log, n

T(n) = z AR

=1

o



Recursive List Summation

log, n

T(n) = zzi-c

=1




	Slide 1: CSE 332 Winter 2024 Lecture 6: Priority Queues and Recurrences
	Slide 2: ADT: Priority Queue
	Slide 3: Thinking through implementations
	Slide 4: Trees for Heaps
	Slide 5: (Min) Heap Data Structure
	Slide 6: Representing a Heap
	Slide 7: Representing a Heap
	Slide 8: Representing a Heap
	Slide 9: Insert Psuedocode
	Slide 10: Heap Insert
	Slide 11: Heap Insert
	Slide 12: Heap Insert
	Slide 13: Heap Insert
	Slide 14: Heap Insert
	Slide 15: Heap deleteMin
	Slide 16: Heap deleteMin
	Slide 17: Heap deleteMin
	Slide 18: Heap deleteMin
	Slide 19: Heap deleteMin
	Slide 20: Percolate Up and Down (for a Min Heap)
	Slide 21: Percolate Up
	Slide 22: DeleteMin Psuedocode
	Slide 23: Percolate Down
	Slide 24: Other Operations
	Slide 25: Binary Search
	Slide 26: Analysis of Recursive Algorithms
	Slide 27: How Efficient Is It?
	Slide 28: Let’s Solve the Recurrence!
	Slide 29: Recursive Linear Search
	Slide 30: Unrolling Method
	Slide 31: Recursive List Summation
	Slide 32: Loop Unrolling Method
	Slide 33: Loop Unrolling Method
	Slide 34: Tree Method
	Slide 35: Recursive List Summation

