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ADT: Priority Queue

* What is it?
* A collection of items and their “priorities”
 Allows quick access/removal to the “top priority” thing

 What Operations do we need?
* insert(item, priority)
* Add a new item to the PQ with indicated priority
e Usually, smaller priority value means more important
* deleteMin
* Remove and return the “top priority” item from the queue
* |s_empty
* Indicate whether or not there are items still on the queue

* Note: the “priority” value can be any type/class so long as it’s comparable

(i.e. you can use “<“ or “compareTo” with it)



Thinking through implementations

Data Structure Worst case time to insert Worst case time to deleteMin

Unsorted Array 0(1) 0(n)
Unsorted Linked List 0(1) O(n)
Sorted Array O(n) O(n)
Sorted Linked List O(n) O(1)
Binary Search Tree O(n) O(n)
Binary Heap O(logn) O(logn)

Note: Assume we know the maximum size of the PQ in advance



Trees for Heaps

* Binary Trees:
* The branching factor is 2
* Every node has < 2 children

e Complete Tree:

* All “layers” are full, except the bottom
* Bottom layer filled left-to-right



(Min) Heap Data Structure

* Keep items in a complete binary tree

* Maintain the “(Min) Heap Property” of the tree
e Every node’s priority is < its children’s priority
 Max Heap Property: every node’s priority is = its children




Representing a Heap 13 |2)a|7|s]6|5]|09

* Every complete binary tree with the same
number of nodes uses the same positions
and edges

e Use an array to represent the heap
* Index of root:

* Parent of node i:

e Left child of node i:

* Right child of node i:

* Location of the leaves:
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insert(item){
if(size == arr.length — 1){resize();}
Size++;
arr[i] = item;
percolateUp(i)




insert(item){
put item in the “next open” spot (keep tree complete)
while (item.priority < parent(item).priority){
swap item with parent
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insert(item){
put item in the “next open” spot (keep tree complete)
while (item.priority < parent(item).priority){
swap item with parent
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insert(item){
put item in the “next open” spot (keep tree complete)

while (item.priority < parent(item).priority){
swap item with parent — Percolate Up
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insert(item){
put item in the “next open” spot (keep tree complete)

while (item.priority < parent(item).priority){
swap item with parent — Percolate Up




H | t ’
eap Inser
() (2]
ONNONROENO

insert(item){
put item in the “next open” spot (keep tree complete)
while (item.priority < parent(item).priority){
swap item with parent



deleteMin(){
ojolo

br = bottom-right item

move br to the root

while(br > either of its children){
swap br with its smallest child

}

return min
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deleteMin(){
min = root G g

br = bottom-right item

move br to the root

while(br > either of its children){
swap br with its smallest child

}

return min



Percolate Up and Down (for a Min Heap)

e Goal: restore the “Heap Property”

* Percolate Up:
* Take a node that may be smaller than a parent, repeatedly swap with a parent
until it is larger than its parent
* Percolate Down:
* Take a node that may be larger than one of its children, repeatedly swap with
smallest child until both children are larger
* Worst case running time of each:
* O(logn)



Percolate Up

percolateUp(int i){
int parent =i/2; \\ index of parent
ltem val = arr[i]; \\ value at current location
while(i > 1 && arr[i].priority < arr[parent].priority){ \\ until location is root or heap property holds
arr[i] = arr[parent]; \\ move parent value to this location
arr[parent] = val; \\ put current value into parent’s location
i = parent; \\ make current location the parent

parent =i/2; \\ update new parent



DeleteMin Psuedocode

deleteMin(){
theMin = arr[1];
arr[1] = arr[size];
Size--;
percolateDown(1);
return theMin;



Percolate Down

percolateDown(int i){
int left =i*2; \\ index of left child
int right =i*2+1; \\ index of right child
ltem val = arr[i]; \\ value at location
while(left <=size){ \\ until location is leaf
int toSwap = right;
if(right > size | | arr[left].priority < arr[right] .priority){ \\ if there is no right child or if left child is smaller
toSwap = left; \\ swap with left
}\\ now toSwap has the smaller of left/right, or left if right does not exist
if (arr[toSwap] .priority < val.priority){ \\ if the smaller child is less than the current value
arr[i] = arr[toSwap];
arr[toSwap] = val; \\ swap parent with smaller child
i = toSwap; \\ update current node to be smaller child
left = i*2;
right = i*2+1;
}

else{ return;} \\ if we don’t swap, then heap property holds



Other Operations

* Increase Key

* Given the index of an item in the PQ, make its priority value larger
* Min Heap: Then percolate down
* Max Heap: Then percolate up

* Decrease Key

* Given the index of an item in the PQ, make its priority value smaller

* Min Heap: Then percolate up
* Max Heap: Then percolate down

* Remove
e Given the item at the given index from the PQ



Binary Search

search(value, sortedArr){
return helper(value, sortedArr, O, sortedArr.length);

}
helper(value, arr, low, high){
if (low == high){ return false; }
mid = (high + low) / 2;
if (arr[mid] == value){ return true; }
if (arr[mid] < value){ return helper(value, arr, mid+1, high); }
else { return helper(value, arr, low, mid); }



Analysis of Recursive Algorithms

e Overall structure of recursion:
Do some non-recursive “work”
* Do one or more recursive calls on some portion of your input
e Do some more non-recursive “work”
* Repeat until you reach a base case

* Runningtime: T(n) =T(p,) + T(p,) + -+ T(p,) + f(n)
* The time it takes to run the algorithm on an input of size n is:
 The sum of how long it takes to run the same algorithm on each smaller input
e Plus the total amount of non-recursive work done at that step

e Usually:
« T(n) =a-T(§)+f(n)

* Called “divide and conquer”
*T(n) =T(n—c)+ f(n)

e Called “chip and conquer”



How Efficient Is It?

n T(n) = “cost” of running the entire
* T(n) =1+T ([ED algorithm on an array of length n

* Basecase:T(1) =1

27



Let’s Solve the Recurrence!
T(1) =1 _
T(n) ]

_ Substitute until T(1)
So log, n steps

T(n) = 2 1 =1log,n T(n) € O(logn)

28



Recursive Linear Search

search(value, list){

if(list.isEmpty()){
return false;

{

if (value == list[O]){
return true;

}

list.remove(0);

return search(value, list);



Unrolling Method

* Repeatedly substitute the recursive part of the recurrence
cT(n)=Tn—-1) +c

cT(n)=Tn—-2)+c+c
eT(n)=T(n—3)+c+c+c

eT(n)=c+c+c+--+c

* How many c¢’s?



Recursive List Summation

sum(list){
return sum_helper(list, O, list.size);
}
sum_helper(list, low, high){
if (low == high){ return O; }
if (low == high-1){ return list[low]; }
middle = (high+low)/2;

return sum_helper(list, low, middle) + sum_helper(list, middle, high);



Loop Unrolling Method

e T(n) = 2T (g) ny



Loop Unrolling Method

e T(n) = 2T (g) +c
e T(n) = Z(ZTG) +c) ‘o= 4T(§) + 3¢
e T(n) = 4(2T(§) +c) + 3¢ = 8T(§) +7c
e ...afteri — 1 substitutions
e T(n) = 2'T (%) + (Zi — 1)C
T (%) =T(1) wheni =log, n
e T(n) =29827T(1) + (Zlogzn — 1)c =n-cyp+cn—c=0(n)



Tree Method

Red box represents a
problem instance

Blue value represents
time spent at that level of
recursion
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Recursive List Summation

log, n

T(n) = zzi-c

=1
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