CSE 332 Winter 2024
Lecture 6: Priority Queues and
recurrences

Nathan Brunelle
http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

ADT: Priority Queue

* What is it?
* A collection of items and their “priorities”
 Allows quick access/removal to the “top priority” thing

 What Operations do we need?
* insert(item, priority)
* Add a new item to the PQ with indicated priority
e Usually, smaller priority value means more important
* deleteMin
* Remove and return the “top priority” item from the queue
* |s_empty
* Indicate whether or not there are items still on the queue

* Note: the “priority” value can be any type/class so long as it’s comparable

(i.e. you can use “<“ or “compareTo” with it)

Thinking through implementations

Data Structure Worst case time to insert Worst case time to deleteMin

Unsorted Array 0(1) 0(n)
Unsorted Linked List 0(1) O(n)
Sorted Array O(n) O(n)
Sorted Linked List O(n) O(1)
Binary Search Tree O(n) O(n)
Binary Heap O(logn) O(logn)

Note: Assume we know the maximum size of the PQ in advance

Trees for Heaps

* Binary Trees:
* The branching factor is 2
* Every node has < 2 children

e Complete Tree:

* All “layers” are full, except the bottom
* Bottom layer filled left-to-right

(Min) Heap Data Structure

* Keep items in a complete binary tree

* Maintain the “(Min) Heap Property” of the tree
e Every node’s priority is < its children’s priority
 Max Heap Property: every node’s priority is = its children

Representing a Heap 13 |2)a|7|s]6|5]|09

* Every complete binary tree with the same
number of nodes uses the same positions
and edges

e Use an array to represent the heap
* Index of root:

* Parent of node i:

e Left child of node i:

* Right child of node i:

* Location of the leaves:

Representing a Heap 13 |2)a|7|s]6|5]|09

* Every complete binary tree with the same
number of nodes uses the same positions
and edges

e Use an array to represent the heap
* Index of root:

e Parent of node i:

e Left child of node i:
* Right child of node i:

e Location of the leaves:

Representing a Heap 13 |2)a|7|s]6|5]|09

* Every complete binary tree with the same
number of nodes uses the same positions
and edges

e Use an array to represent the heap
* Index of root:

e Parent of node i:

e Left child of node i:
* Right child of node i:

e Location of the leaves:

Insert Psuedocode 1 (3] 2]a|7|5|6]|5]o9

insert(item){
if(size == arr.length — 1){resize();}
Size++;
arr[i] = item;
percolateUp(i)

insert(item){
put item in the “next open” spot (keep tree complete)
while (item.priority < parent(item).priority){
swap item with parent

H | t G
eap Inser
(2 (2]
O ONROENO

insert(item){
put item in the “next open” spot (keep tree complete)
while (item.priority < parent(item).priority){
swap item with parent

H | t G
eap Inser
(2 (2]
0 ® O &

insert(item){
put item in the “next open” spot (keep tree complete)

while (item.priority < parent(item).priority){
swap item with parent — Percolate Up

H | t G
eap Inser
0 (2]
ONEONROERO

insert(item){
put item in the “next open” spot (keep tree complete)

while (item.priority < parent(item).priority){
swap item with parent — Percolate Up

H | t ’
eap Inser
() (2]
ONNONROENO

insert(item){
put item in the “next open” spot (keep tree complete)
while (item.priority < parent(item).priority){
swap item with parent

deleteMin(){
ojolo

br = bottom-right item

move br to the root

while(br > either of its children){
swap br with its smallest child

}

return min

deleteMin(){
min = root G g

br = bottom-right item

move br to the root

while(br > either of its children){
swap br with its smallest child

}

return min

deleteMin(){
min = root G a

br = bottom-right item

move br to the root

while(br > either of its children){
swap br with its smallest child — pgrcolate Down

0

}

return min

deleteMin(){
min = root G a

br = bottom-right item

move br to the root

while(br > either of its children){
swap br with its smallest child — pgrcolate Down

0

}

return min

deleteMin(){
min = root G g

br = bottom-right item

move br to the root

while(br > either of its children){
swap br with its smallest child

}

return min

Percolate Up and Down (for a Min Heap)

e Goal: restore the “Heap Property”

* Percolate Up:
* Take a node that may be smaller than a parent, repeatedly swap with a parent
until it is larger than its parent
* Percolate Down:
* Take a node that may be larger than one of its children, repeatedly swap with
smallest child until both children are larger
* Worst case running time of each:
* O(logn)

Percolate Up

percolateUp(int i){
int parent =i/2; \\ index of parent
ltem val = arr[i]; \\ value at current location
while(i > 1 && arr[i].priority < arr[parent].priority){ \\ until location is root or heap property holds
arr[i] = arr[parent]; \\ move parent value to this location
arr[parent] = val; \\ put current value into parent’s location
i = parent; \\ make current location the parent

parent =i/2; \\ update new parent

DeleteMin Psuedocode

deleteMin(){
theMin = arr[1];
arr[1] = arr[size];
Size--;
percolateDown(1);
return theMin;

Percolate Down

percolateDown(int i){
int left =i*2; \\ index of left child
int right =i*2+1; \\ index of right child
ltem val = arr[i]; \\ value at location
while(left <=size){ \\ until location is leaf
int toSwap = right;
if(right > size | | arr[left].priority < arr[right] .priority){ \\ if there is no right child or if left child is smaller
toSwap = left; \\ swap with left
}\\ now toSwap has the smaller of left/right, or left if right does not exist
if (arr[toSwap] .priority < val.priority){ \\ if the smaller child is less than the current value
arr[i] = arr[toSwap];
arr[toSwap] = val; \\ swap parent with smaller child
i = toSwap; \\ update current node to be smaller child
left = i*2;
right = i*2+1;
}

else{ return;} \\ if we don’t swap, then heap property holds

Other Operations

* Increase Key

* Given the index of an item in the PQ, make its priority value larger
* Min Heap: Then percolate down
* Max Heap: Then percolate up

* Decrease Key

* Given the index of an item in the PQ, make its priority value smaller

* Min Heap: Then percolate up
* Max Heap: Then percolate down

* Remove
e Given the item at the given index from the PQ

Binary Search

search(value, sortedArr){
return helper(value, sortedArr, O, sortedArr.length);

}
helper(value, arr, low, high){
if (low == high){ return false; }
mid = (high + low) / 2;
if (arr[mid] == value){ return true; }
if (arr[mid] < value){ return helper(value, arr, mid+1, high); }
else { return helper(value, arr, low, mid); }

Analysis of Recursive Algorithms

e Overall structure of recursion:
Do some non-recursive “work”
* Do one or more recursive calls on some portion of your input
e Do some more non-recursive “work”
* Repeat until you reach a base case

* Runningtime: T(n) =T(p,) + T(p,) + -+ T(p,) + f(n)
* The time it takes to run the algorithm on an input of size n is:
 The sum of how long it takes to run the same algorithm on each smaller input
e Plus the total amount of non-recursive work done at that step

e Usually:
« T(n) =a-T(§)+f(n)

* Called “divide and conquer”
*T(n) =T(n—c)+ f(n)

e Called “chip and conquer”

How Efficient Is It?

n T(n) = “cost” of running the entire
* T(n) =1+T ([ED algorithm on an array of length n

* Basecase:T(1) =1

27

Let’s Solve the Recurrence!
T(1) =1 _
T(n)]

_ Substitute until T(1)
So log, n steps

T(n) = 2 1 =1log,n T(n) € O(logn)

28

Recursive Linear Search

search(value, list){

if(list.isEmpty()){
return false;

{

if (value == list[O]){
return true;

}

list.remove(0);

return search(value, list);

Unrolling Method

* Repeatedly substitute the recursive part of the recurrence
cT(n)=Tn—-1) +c

cT(n)=Tn—-2)+c+c
eT(n)=T(n—3)+c+c+c

eT(n)=c+c+c+--+c

* How many c¢’s?

Recursive List Summation

sum(list){
return sum_helper(list, O, list.size);
}
sum_helper(list, low, high){
if (low == high){ return O; }
if (low == high-1){ return list[low]; }
middle = (high+low)/2;

return sum_helper(list, low, middle) + sum_helper(list, middle, high);

Loop Unrolling Method

e T(n) = 2T (g) ny

Loop Unrolling Method

e T(n) = 2T (g) +c
e T(n) = Z(ZTG) +c) ‘o= 4T(§) + 3¢
e T(n) = 4(2T(§) +c) + 3¢ = 8T(§) +7c
e ...afteri — 1 substitutions
e T(n) = 2'T (%) + (Zi — 1)C
T (%) =T(1) wheni =log, n
e T(n) =29827T(1) + (Zlogzn — 1)c =n-cyp+cn—c=0(n)

Tree Method

Red box represents a
problem instance

Blue value represents
time spent at that level of
recursion

T(n) = ZT(

n

C

n
2

/\

n/2

C

—

n/4

C

n/4

AN

I

)+

n/2 ¢

.

n/4 ° n/4
VAN
1 1 11

— 2% . ¢ work per level

>log, 1 levels
of recursion

log, n

T(n) = z AR

=1

o

Recursive List Summation

log, n

T(n) = zzi-c

=1

	Slide 1: CSE 332 Winter 2024 Lecture 6: Priority Queues and recurrences
	Slide 2: ADT: Priority Queue
	Slide 3: Thinking through implementations
	Slide 4: Trees for Heaps
	Slide 5: (Min) Heap Data Structure
	Slide 6: Representing a Heap
	Slide 7: Representing a Heap
	Slide 8: Representing a Heap
	Slide 9: Insert Psuedocode
	Slide 10: Heap Insert
	Slide 11: Heap Insert
	Slide 12: Heap Insert
	Slide 13: Heap Insert
	Slide 14: Heap Insert
	Slide 15: Heap deleteMin
	Slide 16: Heap deleteMin
	Slide 17: Heap deleteMin
	Slide 18: Heap deleteMin
	Slide 19: Heap deleteMin
	Slide 20: Percolate Up and Down (for a Min Heap)
	Slide 21: Percolate Up
	Slide 22: DeleteMin Psuedocode
	Slide 23: Percolate Down
	Slide 24: Other Operations
	Slide 25: Binary Search
	Slide 26: Analysis of Recursive Algorithms
	Slide 27: How Efficient Is It?
	Slide 28: Let’s Solve the Recurrence!
	Slide 29: Recursive Linear Search
	Slide 30: Unrolling Method
	Slide 31: Recursive List Summation
	Slide 32: Loop Unrolling Method
	Slide 33: Loop Unrolling Method
	Slide 34: Tree Method
	Slide 35: Recursive List Summation

