CSE 332 Winter 2024
Lecture 4: Algorithm Analysis
and Priority Queues

Nathan Brunelle
http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Questions to ask:
 What are the units of the input size?
> What are the operations we’re counting?
Wa 'Mm U p — For each line:
* How many times will it run?

* How long does it take to run?
Give the worst case running time for the following code « Does this change with the input size?

\

4L
doSomething(List myList){ (/—'1 > \/l/‘j//(_' ;\LD \ i/Z\ ﬂ/l{_ \L/j\}t,

——>for(|0|<n|++ < ey ﬁ/
>fOF(JOJﬁ7 Z/) L [‘ _ A ’//
4
5

n= myList size();

X++;
FoA
} [= S /
return x;

} C‘:“—'/ A - | /\Z/

/*L7L%7/1#7L3¥— —~
SRR

—_——

L\~L/~J—/77”/7L/”)i/¢\ - T
‘D /\(h%//

RS

V)

Goals for Algorithm Analysis

* |dentify which maps the algorithm’s input size to a measure
of resourcesused
* Domain of the function@hﬂl&pﬂ

* Number of characters in a string, number of items in a li mber of pixels in an image
* Codomain of the functionzéﬂ resources used
* Number of times the algorithm adds two numbers together, number times the algorithm

does a > or < comparison, maximum number of bytes of memory the algorithm uses at
any time

* Important note: Make sure you know the “units” of your domain and
codomain!

 Domain = inputs to the function
 Codomain = outputs to the function

J

Comparing

pal

binary

>
== linear

/

60
50
40
30
20
10

006t
0009t
000tV
0000Y

- 000Le

0oore
000TE
0008¢
000S¢
0o0ozze
0006T
0009t
000€T
0oooT
0004

000t

000T

12

Comparing Running Times

e Suppose | have these algorithms, all of which have the same
input/output behavior:
e Algorithm A’s worst case running time is 10n 4+ 900

e Algorithm B’s worst case running time is 100n — 50
2
* Algorithm C’s worst case running time is .

100
* Which algorithm is best?

What We\need

/

* A way of comparing functions that:
lgnores constants and non-dominant terms

~ » Looks at long term trends
* Ignores “small” inputs

-
<

0
rm =0t < 9
Fn) = 0(gm) £ /="

77N
F) = gm) /=
7 Tz 7

>/

Asymptotic Notation L,% /07 .

VAN ENS
Jo(g(m)) /- Ay 50 7/;7
2

/\ * The set of functions vith asymptotic behavior less than or equal to g(n)

* Upper<bounded by a constant timgs g for large enough values n
-wajz Ic > 0.3ny > O/Vn = no.f(n)@ - g(n

l .

) R L Tl— .
—/ * the set of functions with asymptotic behavior greater than or equal to g(n)

* Lower-bounded by a constant times g for large enough values n

c fE Q(g(n)) = mam\m > no.f(nTE)r - g(n)
L

* 0(g(m))

ﬁ° “Tightly” within constant of g for large n

¥ M ﬂ(O(Q(n)),

S—

N

Asymptotic Notation Example /o=
» Show: 107 + 100 € 0(n?)
» Technique: find values ¢ > 0 and n o > O such that Vn > n,. W
* Proof: L’_\/ /\/J

) D+ 10/ 5///7

— T e —/C 2 T O

Asymptotic Notation Example

* Show: 10n + 100 € 0(n?)
e Technique: find values ¢ > 0 and ny, > 0 such that Vn > n,.10n + 100 < ¢ - n*
e Proof: Letc = 10andngy = 6.Show Vn > 6.10n + 100 < 10n*
10n + 100 < 10n?
=n+ 10 < n?
=10<n?-—-n
=10<n(n-1)
This is True because n(n — 1) is strictly increasing and 6(6 — 1) > 10

Asymptotic Notation Example

* Show: 13n? — 50n € Q(n?%)
e Technique: find values ¢ > 0 and n, > 0 such that Vn > n,.13n% — 50n > ¢ - n?
* Proof:

Asymptotic Notation Example

* Show: 13n? — 50n € Q(n?%)
e Technique: find values ¢ > 0 and n, > 0 such that Vn > n,.13n% — 50n > ¢ - n?
 Proof: letc =12 andny = 50.Show Vn > 50.13n% — 50n > 12n*

13n% — 50n > 12n?

n? —50n >0

n‘ > 50n

n =50

This is certainly true Vn = 50.

Asymptotlc Notation Example)

— Y I%//)

[/_\J
V) icw)

Uihzh <
) (1 =

-Show 2€0n

Asymptotic Notation Example

Proof by

[) ° 2
To Show: n? & 0(n) Contradiction!

* Technique: Contradiction
* Proof: Assume{ﬁ@Then @ 0s.t.Vn > ng,n® < cn

Let us derive constant c. Foralln > ny > 0, we know:
cn > n?,

Since c is lower bounded by n, ¢ cannot be a constant and make this
True.
Contradiction. Therefore n* & 0(n).

Gaining Intuition %%
* When doing asymptotic anaIy5|s of functions: 7[/% Ag

* If multiple expressions are added together, ignore all but the “blggest
* If f(n) grows asymptotically faster than g(n), then f(n) + g(n) € @(f(n))
\/-Ignore all multiplicative constants — C /
s f(n)+ce @(f(n)) for any constantc € R ﬁj\é

ye bases of logarithms
* Do NQOT ignore:

* Non-multiplicative and non-additive canstants (e.g. in exponents, bases of exponents)
* Logarithms themselves m 1/\
* Examples:)\ 5
*4n + 5
* 0.5nlogn + 2n + 7) 2 L 3

« n3+ 2"+ 3n
 nlog(10n?)

More Examples

* |s each of the following True or False?
*4+3n€ 0(n)
*n+ 2logn € 0(logn)
*logn+2¢€ 0(1)
- n°Y € 0(1.1M)
« 3" € (2"

Common Categories

* 0(1) “constant”

* O(logn) “logarithmic”
* 0(n) “linear”

* O(nlogn) “log-linear”

« 0(n?) “quadratic”

* 0(n3) “cubic”

* 0(n*) “polynomial”
e O(k™) “exponential”

Defining your running time function

* Worst-case complexity:
* max number of steps algorithm takes on “most challenging” input

* Best-case complexity:
* min number of steps algorithm takes on “easiest” input

* Average/expected complexity:
e avg number of steps algorithm takes on random inputs (context-dependent)

* Amortized complexity:

* max total number of steps algorithm takes on M “most challenging”
consecutive inputs, divided by M (i.e., divide the max total sum by M).

ADT: Queue

* What is it?
e A “First In First Out” (FIFO) collection of items

* What Operations do we need?
* Enqueue
* Add a new item to the queue
* Dequeue
 Remove the “oldest” item from the queue
* |s_empty
* Indicate whether or not there are items still on the queue

ADT: Priority Queue

* What is it?
* A collection of items and their “priorities”
 Allows quick access/removal to the “top priority” thing

 What Operations do we need?
* insert(item, priority)
* Add a new item to the PQ with indicated priority
e Usually, smaller priority value means more important
* deleteMin
* Remove and return the “top priority” item from the queue
* |s_empty
* Indicate whether or not there are items still on the queue

* Note: the “priority” value can be any type/class so long as it’s comparable
(i.e. you can use “<“ or “compareTo” with it)

Priority Queue, example

PriorityQueue PQ = new PriorityQueue();
PQ.insert(5,5)
PQ.insert(6,6)
PQ.insert(1,1)
PQ.insert(3,3)
PQ.insert(8,8)
Print(PQ.deleteMin)
Print(PQ.deleteMin)
Print(PQ.deleteMin)
Print(PQ.deleteMin)
Print(PQ.deleteMin)

Priority Queue, example

PriorityQueue PQ = new PriorityQueue();
PQ.insert(5,5)
PQ.insert(6,6)
PQ.insert(1,1)
Print(PQ.deleteMin)
PQ.insert(3,3)
Print(PQ.deleteMin)
Print(PQ.deleteMin)
PQ.insert(8,8)
Print(PQ.deleteMin)
Print(PQ.deleteMin)

Applications?

Thinking through implementations

Data Structure Worst case time to insert Worst case time to deleteMin

Unsorted Array
Unsorted Linked List
Sorted Circular Array
Sorted Linked List

Binary Search Tree

Note: Assume we know the maximum size of the PQ in advance

	Slide 1: CSE 332 Winter 2024 Lecture 4: Algorithm Analysis and Priority Queues
	Slide 2: Warm Up
	Slide 3
	Slide 4: Goals for Algorithm Analysis
	Slide 5: Comparing
	Slide 6: Comparing Running Times
	Slide 7: What we need
	Slide 8
	Slide 9: Asymptotic Notation
	Slide 10
	Slide 11: Asymptotic Notation Example
	Slide 12: Asymptotic Notation Example
	Slide 13
	Slide 14: Asymptotic Notation Example
	Slide 15: Asymptotic Notation Example
	Slide 16: Asymptotic Notation Example
	Slide 17: Asymptotic Notation Example
	Slide 18: Gaining Intuition
	Slide 19: More Examples
	Slide 20: Common Categories
	Slide 21: Defining your running time function
	Slide 22: ADT: Queue
	Slide 23: ADT: Priority Queue
	Slide 24: Priority Queue, example
	Slide 25: Priority Queue, example
	Slide 26: Applications?
	Slide 27: Thinking through implementations

