CSE 332 Winter 2024
Lecture 4: Algorithm Analysis
and Priority Queues

Nathan Brunelle
http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

7 Questions to ask:

/_—> * What are the units of the input size?
M /) g Y— g . What are the operations we’re counting?
dalrm U p 7 : ;S T For each line: -

_~>* How many times will it run?

¢ How long does it take to run?
Give the worst case running time for the following code « Does this change with the input size?

doSomething(List myList){ C <= O 2
N

__n =mylist.size();

=0; | __
:‘(or (i=0; i < n; i++){ L) L Z é —
for (j=0; j <i; j++){) _ [= 2 —_
— E _ (7
}

return x;

LL*& L3 s S

-
A D =)
: e
- = =/
>~» 2

C
=

Goals for Algorithm Analysis

* |dentify hich maps the algorithm’s input size to a measure
of resources used

 Domain of the function: sizes of the input
 Number of characters in a string, number of items in a list, number of pixels in an image

e Codomain of the function: counts of resources used
* Number of times the algorithm adds two numbers together, number times the algorithm
does a > or < comparison, maximum number of bytes of memory the algorithm uses at
any time
* Important note: Make sure you know the “units” of your domain and
codomain!
 Domain = inputs to the function

 Codomain = outputs to the function

binary

== linear

- 0006V
///- 00097
\ 000€Y
- |ooooy
000L€E
000vE
000T€
00087
00057
00077
0006T
00091
000€T
0000T
000L

0007

000T

A

90
80
70
60
50
40
30
20
10

0

Comparing

vy = /O
Comparing Running Times

e Suppose | have these algorithms, all of which have the same

input/output behavior: DD D
e Algorithm A’s worst case running time is 10n 4+ 900 <
T S

e Algorithm B’s worst case running time is 100n — 50

* Algorithm C’s worst case running timei@ 7

100
* Which algorithm is best?

SN—

What we need

)

* A way of comparing functions that: / g /)

* Ignores constants and non-dominant terms

/ * Looks at long term trends M Z-
« Ignores “small” inputs
— Y P
Av

=
)= 0(gm)

f(n) =06(gn))

—,\

f(n) = Q(g(n))

Asymptotic Notation

» 0(g())

* The set of functions with asymptotic behavior less than or equal to g(n)
* Upper-bounded by a constant time large %gh values n

fEO(g(n))_EIc>O Eln0>0 n=ng f(n gn) Q
7 ° 7L \/
Q(g(n)) , T
~ « the set of functions with qjmp%m behawo?greater than or equal to g(n)
* Lower-bounded by a constant times g for large eggh values n

» f€Q(g(n)) =3c>0.3n5 > 0.Vn = ngy. f(n)=¥ - g(n) g
— +0(g(m) [/_\)

ghtly” within constant of g for large n
@Egm) N 0(g(n)

» f(n) € 0(g(n))
* f(n)" <"g(n)
* Eventually ¢ - g(n) will become and stay bigger

* An algorithm whose running time is f (n) will eventually do fewer operations
than an algorithm whose running time is g(n)

* An algorithm whose running time is f(n) is faster than an algorithm whose
running time is g(n)

AS\ﬁ\ptotic Notation Example
\

» Show: 10n + 100 € 0 ~ 7 ey 5%7(
* Technique: find vaIuesand o > O such thatvn > no.gOn +100<c-n / y

* Proof:
[PV O0 L N s e

Asymptotic Notation Example

* Show: 10n + 100 € 0(n?)
e Technique: find values ¢ > 0 and ny, > 0 such that Vn > n,.10n + 100 < ¢ - n*
e Proof: Letc = 10andngy = 6.Show Vn > 6.10n + 100 < 10n*
10n + 100 < 10n?
=n+ 10 < n?
=10<n?-—-n
=10<n(n-1)
This is True because n(n — 1) is strictly increasing and 6(6 — 1) > 10

Asymptotic Notation Example

* Show: 13n? — 50n € Q(n?%)
e Technique: find values ¢ > 0 and n, > 0 such that Vn > n,.13n% — 50n > ¢ - n?
* Proof:

Asymptotic Notation Example

* Show: 13n? — 50n € Q(n?%)
e Technique: find values ¢ > 0 and n, > 0 such that Vn > n,.13n% — 50n > ¢ - n?
 Proof: letc =12 andny = 50.Show Vn > 50.13n% — 50n > 12n*

13n% — 50n > 12n?

n? —50n >0

n‘ > 50n

n =50

This is certainly true Vn = 50.

Asymptotic Notation Example

(D Fn, frza
o Vo, =)
v %@ 3@ 74,

* Show: n? & 0(n)

- /K/m/>é/0£4

Asymptotic Notation Example

) Proof by
* To Show: n? ¢ 0(n) Contradiction!

* Technique: Contradicti
* Proof: Assumen? € O(n)./Then3c,nyg > 0s.t.Vn > no,n2 < cn
Let us derive constant c. Foralln > ny > 0, we know:

cn > n?,

Since c is lower bounded by n, ¢ cannot be a constant and make this
True.
ﬁntradictizn. Therefore n? ¢ 0(n).

Gaining Intuition \/)%%K

D ~
}6/ 4 %ﬁ
 When doing asymptotic analysis of functions:
* If multiple expressions are added together, ignore all but the “biggest”

T If f(n) grows asymptotically faster than g(n), then f(n) + g(n) € @(f(n))

* Ignore all multiplicative constants }/{L S I
e f(n)+ce @(f(n)) for any constantc € R
/°Ignore bases of logarithms 4 a
* Do NOT ignore: l ‘7/§ ' z

* Non-multiplicative and non-additive constants (e.g. in exponents, bases of exponents)

* Logarithms themselves
/

* Examples: —
*4n + 5 /(j/&,m—“c/& /)
* 0.5nlogn + 2n + 7 j/a
e n3+2"+ 3n
 nlog(10n?)

More Examples

* |s each of the following True or False?
*4+3n€ 0(n)
*n+ 2logn € 0(logn)
*logn+2¢€ 0(1)
- n°Y € 0(1.1M)
« 3" € (2"

Common Categories

* 0(1) “constant”

* O(logn) “logarithmic”
. 0@ “linear”

. O(n\lgg/n) “log-linear”

. 0%2') “quadratic”

. 0@3) “cubic”

- 0(n* “polynomial”

—

e O(k™) “exponential”

Defining your running time function

* Worst-case complexity:
* max number of steps algorithm takes on “most challenging” input

* Best-case complexity:
* min number of steps algorithm takes on “easiest” input

* Average/expected complexity:
e avg number of steps algorithm takes on random inputs (context-dependent)

* Amortized complexity:

* max total number of steps algorithm takes on M “most challenging”
consecutive inputs, divided by M (i.e., divide the max total sum by M).

ADT: Queue

* What is it?
e A “First In First Out” (FIFO) collection of items

* What Operations do we need?
* Enqueue
* Add a new item to the queue
* Dequeue
 Remove the “oldest” item from the queue
* |s_empty
* Indicate whether or not there are items still on the queue

ADT: Priority Queue

* What is it?
* A collection of items and their “priorities”
 Allows quick access/removal to the “top priority” thing

 What Operations do we need?
* insert(item, priority)
* Add a new item to the PQ with indicated priority
e Usually, smaller priority value means more important
* deleteMin
* Remove and return the “top priority” item from the queue
* |s_empty
* Indicate whether or not there are items still on the queue

* Note: the “priority” value can be any type/class so long as it’s comparable
(i.e. you can use “<“ or “compareTo” with it)

Priority Queue, example

PriorityQueue PQ = new PriorityQueue();
PQ.insert(5,5)
PQ.insert(6,6)
PQ.insert(1,1)
PQ.insert(3,3)
PQ.insert(8,8)
Print(PQ.deleteMin)
Print(PQ.deleteMin)
Print(PQ.deleteMin)
Print(PQ.deleteMin)
Print(PQ.deleteMin)

Priority Queue, example

PriorityQueue PQ = new PriorityQueue();
PQ.insert(5,5)
PQ.insert(6,6)
PQ.insert(1,1)
Print(PQ.deleteMin)
PQ.insert(3,3)
Print(PQ.deleteMin)
Print(PQ.deleteMin)
PQ.insert(8,8)
Print(PQ.deleteMin)
Print(PQ.deleteMin)

Applications?

Thinking through implementations

Data Structure Worst case time to insert Worst case time to deleteMin

Unsorted Array
Unsorted Linked List
Sorted Circular Array
Sorted Linked List

Binary Search Tree

Note: Assume we know the maximum size of the PQ in advance

	Slide 1: CSE 332 Winter 2024 Lecture 4: Algorithm Analysis and Priority Queues
	Slide 2: Warm Up
	Slide 3
	Slide 4: Goals for Algorithm Analysis
	Slide 5: Comparing
	Slide 6: Comparing Running Times
	Slide 7: What we need
	Slide 8
	Slide 9: Asymptotic Notation
	Slide 10
	Slide 11: Asymptotic Notation Example
	Slide 12: Asymptotic Notation Example
	Slide 13: Asymptotic Notation Example
	Slide 14: Asymptotic Notation Example
	Slide 15: Asymptotic Notation Example
	Slide 16: Asymptotic Notation Example
	Slide 17: Gaining Intuition
	Slide 18: More Examples
	Slide 19: Common Categories
	Slide 20: Defining your running time function
	Slide 21: ADT: Queue
	Slide 22: ADT: Priority Queue
	Slide 23: Priority Queue, example
	Slide 24: Priority Queue, example
	Slide 25: Applications?
	Slide 26: Thinking through implementations

