CSE 332 Autumn 2023

Lecture 3: Algorithm Analysis
pt.2

Nathan Brunelle
http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Why Do resource Analysis?

g/

* Using observations necessarily couples the algorithm with its implementation

* If my implementation on my computer takes more time than your -
implementation on your computer, we cannot conclude your algorithm is
better

* Allows us to compare glgorithms, not implementations

* We can predict an algorithm’s running time before implementing

—_

. Hnderstand where the bottlenecks are in our algorithm

L o~ //)/w 74/ oo Ay .
- —

\

/)L
Goals for Algorithm Analysis —
;o S/Oﬁ <

* |dentify afunctionjwhich maps th€ algorithm’s input size to a measure
of r rCes use

e Domain of the functionLﬂZES-DfMp@

* Number of characters in a string, number of items in a list, number of pixels in an image

* Codomain of the function:lemu'nso\fresources used / O 5

* Number of times the algorithm adds two numbers toget@, number times the algorithm
does a > or < comparison, maximum number of bytes of memory the algorithm uses at
any time —

* Important note: Make sure you know the “units” of your domain and
codomain!

MWorst Case Running Time Analysis

* If an aigorithm has a worst case running time of f (n)

 Among all possible puts, the “worst” one will do.f (n) “operations”
* l.e. f(n) gives the maximum operation count from among all inputs of size n

/Oae — (O L

L~ S
myFunct.on(L.stn){ W/rst%ase Running Time - Exampte g
/Jc’ 55+5; 7] -

= e

c=b/3;, | Questions to ask:
b=c+100; | ;/\ * What are the units of the input size?
for (i=0; i&n.size@{ * #itemsin the list
b++;,) * Length of variable n
} -7 What are the operations we’re counting?
if (b % 2==0){ « arithmetic -~ N
~J
/@ O 4 & _<"Fdr each line: \K \
} * How many times will it run?
__else{ * How long does it take to run?
for (i = 0; i < n.size(); i++) { y) * Does this change with the input size?
C++; //\-\/_\
}
”‘\4—(4(/7¢ A R R
returnc; O

} Lﬁ”\?“[—/ -

Worst Case Running T|me — Examp\e 2

. n) =
b_e_@moymg(Liﬂ{ Questions to ask:
List m = []; e What are the units of the input size?
for (i=0; i < n.size(); i++){ * What are the operations we’re counting?
([]/Q‘) * For each line: -

m.add(n[i]);

—_—

* How many times will it run?
for (j=0; j< n.size(); j++){ 64 How long does it take to run?

. I 7 Does this change with the input size?
rint (“Hi, I’'m annoying”); - Y

L L
retur/rz% v - \ < }<V7 —

@@/Running Time — General Guide
— Ny

* Add together the time omeents

.Mﬂ Sum up the time required through each iteration of the loop

_

* If each takes the same time, then [time per loop X number of iterations]
Jcathta 'me tme S|

* Conditionals: Sum together the time tO}h_ELk the condition and time
of the slowest branch

* Function Calls: Time of the function’s body

—
e Recursion: Solve a recurrence relation

- /A

Searching in a Sorted List

Jo12345

boolean ImearSearch@ay a |ntegeLI§){
for(| 0; i< a.length; i++){

f (ali] == /
/L return true; WC ' m

} o ,
} /50, z
return false; N

} () =

g

Faster way? —
5 8 13 | 42 | 75(| 79 }38 90 | 95 | 99
o 1 2 3 4 Ly6 7 8 9
Can you think of a faster algorithm to solve this problem? ¥_>
[)\
79

o

7
3&1/»4//(/—“ //§ /0/(-/,

i S
| ((C)% S Y= 7~ U

0
T o o)

b -

-/(\b//'/‘l

Y ANl

<
(\ | &{%5
1 e //§m/./’ // /M/
O
— 1 97 e low v
éQL!MVSu/& L;‘C///?%%/?L
+ -
e
V}S-ﬂ‘- e

—e—binary)

——linear

~ gooev
(Qo0o9t
DOOEY
D000V
000LE
000vE
000TE
0008¢
000S¢
0o0ozze
0006T
0009t
00¢€T

90

80
70
60
50
40
30
20
10

0

Comparing

- linear
—

12

Comparing Running Times

e Suppose | have these algorithms, all of which have the same
input/output behavior:
e Algorithm A’s worst case running time is 10n 4+ 900

e Algorithm B’s worst case running time is 100n — 50
2
* Algorithm C’s worst case running time is .

100
* Which algorithm is best?

c2g(n)
f(n)

c1g(n

Tig

f(m) =0(g(n))
f(n) =06(gn))
f(n) = Q(g(n))

Asymptotic Notation

» 0(g())

* The set of functions with asymptotic behavior less than or equal to g(n)
* Upper-bounded by a constant times g for large enough values n

* f€0(g(n)) =3c>0.3ny > 0.Yn =ny.f(n) < c- gn)

* Q(g(n))
* the set of functions with asymptotic behavior greater than or equal to g(n)
* Lower-bounded by a constant times g for large enough values n

« fE€Q(9g(n)) =3c>0.3n5 > 0.Vn = ngy.f(n) = c- g(n)

» 0(g(n))

* “Tightly” within constant of g for large n

» Q(g(m)) n0(g(n)

Asymptotic Notation Example

* Show: 10 + 100 € 0(n?)
e Technique: find values ¢ > 0 and ny > 0 such that Vn > n,.10n + 100 < ¢ - n?
* Proof:

Asymptotic Notation Example

* Show: 10n + 100 € 0(n?)
e Technique: find values ¢ > 0 and ny, > 0 such that Vn > n,.10n + 100 < ¢ - n*
e Proof: Letc = 10andngy = 6.Show Vn > 6.10n + 100 < 10n*
10n + 100 < 10n?
=n+ 10 < n?
=10<n?-—-n
=10<n(n-1)
This is True because n(n — 1) is strictly increasing and 6(6 — 1) > 10

Asymptotic Notation Example

* Show: 13n? — 50n € Q(n?%)
e Technique: find values ¢ > 0 and n, > 0 such that Vn > n,.13n% — 50n > ¢ - n?
* Proof:

Asymptotic Notation Example

* Show: 13n? — 50n € Q(n?%)
e Technique: find values ¢ > 0 and n, > 0 such that Vn > n,.13n% — 50n > ¢ - n?
 Proof: letc =12 andny = 50.Show Vn > 50.13n% — 50n > 12n*

13n% — 50n > 12n?

n? —50n >0

n‘ > 50n

n =50

This is certainly true Vn = 50.

Asymptotic Notation Example

* Show: n? & 0(n)

Asymptotic Notation Example

Proof by

[) ° 2
To Show: n? & 0(n) Contradiction!

* Technique: Contradiction

e Proof: Assumen? € O(n). Then3c,ng > 0s.t.Vn > ny,n? < cn
Let us derive constant c. Foralln > ny > 0, we know:
cn > n?,
c = n.

Since c is lower bounded by n, ¢ cannot be a constant and make this
True.
Contradiction. Therefore n* & 0(n).

Galning Intuition

 When doing asymptotic analysis of functions:
* If multiple expressions are added together, ignore all but the “biggest”
* If f(n) grows asymptotically faster than g(n), then f(n) + g(n) € @(f(n))
* Ignore all multiplicative constants
e f(n)+ce G)(f(n)) for any constantc € R
* Ignore bases of logarithms

* Do NOT ignore:
* Non-multiplicative and non-additive constants (e.g. in exponents, bases of exponents)
* Logarithms themselves

* Examples:
*4n + 5
* 0.5nlogn + 2n + 7
« n3+ 2"+ 3n
 nlog(10n?)

More Examples

* |s each of the following True or False?
*4+3n€ 0(n)
*n+ 2logn € 0(logn)
*logn+2¢€ 0(1)
- n°Y € 0(1.1M)
« 3" € (2"

Common Categories

* 0(1) “constant”

* O(logn) “logarithmic”
* 0(n) “linear”

* O(nlogn) “log-linear”

« 0(n?) “quadratic”

* 0(n3) “cubic”

* 0(n*) “polynomial”
e O(k™) “exponential”

Defining your running time function

* Worst-case complexity:
* max number of steps algorithm takes on “most challenging” input

* Best-case complexity:
* min number of steps algorithm takes on “easiest” input

* Average/expected complexity:
e avg number of steps algorithm takes on random inputs (context-dependent)

* Amortized complexity:

* max total number of steps algorithm takes on M “most challenging”
consecutive inputs, divided by M (i.e., divide the max total sum by M).

	Slide 1: CSE 332 Autumn 2023 Lecture 3: Algorithm Analysis pt.2
	Slide 2: Why Do resource Analysis?
	Slide 3: Goals for Algorithm Analysis
	Slide 4: Worst Case Running Time Analysis
	Slide 5: Worst Case Running Time - Example
	Slide 6: Worst Case Running Time – Example 2
	Slide 7: Worst Case Running Time – General Guide
	Slide 8: Searching in a Sorted List
	Slide 9: Faster way?
	Slide 10
	Slide 11: Comparing
	Slide 12: Comparing Running Times
	Slide 13
	Slide 14: Asymptotic Notation
	Slide 15: Asymptotic Notation Example
	Slide 16: Asymptotic Notation Example
	Slide 17: Asymptotic Notation Example
	Slide 18: Asymptotic Notation Example
	Slide 19: Asymptotic Notation Example
	Slide 20: Asymptotic Notation Example
	Slide 21: Gaining Intuition
	Slide 22: More Examples
	Slide 23: Common Categories
	Slide 24: Defining your running time function

