CSE 332 Autumn 2023

Lecture 2: Algorithm Analysis
pt.2

Nathan Brunelle
http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Why Do fgsm&e%nalysm?

— Y Ve = C &
* Allows us to co/pare\lgorlt ms, not implementations
* Using observations necessarily couples the algorithm with its implementation

* If my implementation on my computer takes more time than your
implementation on your computer, we cannot conclude your algorithm is
better

* We can predict an algorithm’s running time before implementing

* Understand where the bottlenecks are in our algorithm

/,\

por e /(//‘/OQ(\L/ SVl \’L,'Vm[

Goals for Algorithm Ana|y5|s 4 '
P (n)- & 5/ CErmtn,

. Identlfy af&‘lfﬁb?)whlch maps the algorithm’s input size to a measure /
(f resources used

* Domain of the function: sizes of the input
/
 Number of characters in a string, number of items in a list, number of pixels in an image

e Codomain of the function: counts of resources used

. . / . .
* Numberoftimes the algorithm addsWLs_Logelhﬂn number times the algorithm
does comparison, maximum number of bytes of memory the algorithm uses at

any time

* Important note: Make sure you know the “units” of your domain and
codomain!

Worst Case Running Time Analysis
//7 — 3

* If an algorithm has a worst case running time off(rp —
* Among all possible size-n inputs, the “worst” one will do f(n) “operations”

/

* l.e. f(n) gives the maximum operation count from among all inputs of size n

Y f(”l/}V\L Yt oo
Qz(’\/iﬂ

17, 7 —

myFuncion(is i Worst Case Running Time - Example
c=b/3; | Questions to ask:
~ b=c+100; / * What are the units of the input size?

p—

~ for (i = 0; i < n.size();(i++) { e #itemsin the list
y [+

b+’ |\ /h/ * Length of variablfe N |
} What are the operations we’re counting?
j(b_%,z ==0) { 4 e arithmetic—
ctt; /] * For each line: =
} * How many times will it run?
Ise { A~ > / * How long does it take to run?
for (i = 0; i < n.size(); i++) { * Does this change with the input size?
C++; V*\
} [+ | «
return c;

) el ~—

Worst Case Running Time — Example 2
beAnnoying(List n){

Questions to ask:

List m = []; N S Iﬁf , * What are the units of the input size?
for (i=0; i < n.size(): i++ * What are the operations we’re counting?
(Q—/(L’ N * For each line:
m.add(n[i]); * How many times will it run?
for (j=0; j< n.size(); j++){ I * How long does it take to run?
w(”Hi' 'm annoying”); change with the input size:
2
} ﬂ
} A
(-)
return; - | /)—l N\ L A
(= A — |
} :
(27

Mase Running TirT)\e — General Guide

* Add together the time of\consecutive statemenB

* Loops: Sum up the time rwthrough each iteration of the loop
~+ If each takes the same time, then [time per loop X number of |teTzTriUTT51//

* Conditionals: Sum together the time to check the condition and time
of the slowest branch

* Function Calls:Time of the function’s body

°?ecursion: Solve a recurrence relation\(V) A ”L/
J 0 - 2

A,

Searching in a Sorted List

13

42

75

79

88

90

95

99

boolean linearSearch(array a, integerJ<){
for(i=0; i< a.length; i++){

it @){

return true;

} /5

return false;

/

oSl S e

Faster way: =
/(5.0 el

0
Can you think of a faster algorithm to SOI\‘E:".IC

5

/va/f&’/’#‘ on Fhao L, [Z
L5, (. Lo Lﬂ,‘ﬂg e L“/Ac/ﬁ

> 1
/ﬁ[& k/ C9,.7) —

ey
]
=
o

linear

90
80
70
60
50
40
30
20
10

Comparing

—#—Dbinary

== |irecar

12

10

Comparing Running Times

e Suppose | have these algorithms, all of which have the same
input/output behavior:
e Algorithm A’s worst case running time is 10n 4+ 900

e Algorithm B’s worst case running time is 100n — 50
2
* Algorithm C’s worst case running time is .

100
* Which algorithm is best?

c2g(n)
f(n)

c1g(n

Tig

f(m) =0(g(n))
f(n) =06(gn))
f(n) = Q(g(n))

Asymptotic Notation

» 0(g())

* The set of functions with asymptotic behavior less than or equal to g(n)
* Upper-bounded by a constant times g for large enough values n

* f€0(g(n)) =3c>0.3ny > 0.Yn =ny.f(n) < c- gn)

* Q(g(n))
* the set of functions with asymptotic behavior greater than or equal to g(n)
* Lower-bounded by a constant times g for large enough values n

« fE€Q(9g(n)) =3c>0.3n5 > 0.Vn = ngy.f(n) = c- g(n)

» 0(g(n))

* “Tightly” within constant of g for large n

» Q(g(m)) n0(g(n)

Asymptotic Notation Example

* Show: 10 + 100 € 0(n?)
e Technique: find values ¢ > 0 and ny > 0 such that Vn > n,.10n + 100 < ¢ - n?
* Proof:

Asymptotic Notation Example

* Show: 10n + 100 € 0(n?)
e Technique: find values ¢ > 0 and ny, > 0 such that Vn > n,.10n + 100 < ¢ - n*
e Proof: Letc = 10andngy = 6.Show Vn > 6.10n + 100 < 10n*
10n + 100 < 10n?
=n+ 10 < n?
=10<n?-—-n
=10<n(n-1)
This is True because n(n — 1) is strictly increasing and 6(6 — 1) > 10

Asymptotic Notation Example

* Show: 13n? — 50n € Q(n?%)
e Technique: find values ¢ > 0 and n, > 0 such that Vn > n,.13n% — 50n > ¢ - n?
* Proof:

Asymptotic Notation Example

* Show: 13n? — 50n € Q(n?%)
e Technique: find values ¢ > 0 and n, > 0 such that Vn > n,.13n% — 50n > ¢ - n?
 Proof: letc =12 andny = 50.Show Vn > 50.13n% — 50n > 12n*

13n% — 50n > 12n?

n? —50n >0

n‘ > 50n

n =50

This is certainly true Vn = 50.

Asymptotic Notation Example

* Show: n? & 0(n)

Asymptotic Notation Example

Proof by

[) ° 2
To Show: n? & 0(n) Contradiction!

* Technique: Contradiction

e Proof: Assumen? € O(n). Then3c,ng > 0s.t.Vn > ny,n? < cn
Let us derive constant c. Foralln > ny > 0, we know:
cn > n?,
c = n.

Since c is lower bounded by n, ¢ cannot be a constant and make this
True.
Contradiction. Therefore n* & 0(n).

Galning Intuition

 When doing asymptotic analysis of functions:
* If multiple expressions are added together, ignore all but the “biggest”
* If f(n) grows asymptotically faster than g(n), then f(n) + g(n) € @(f(n))
* Ignore all multiplicative constants
e f(n)+ce G)(f(n)) for any constantc € R
* Ignore bases of logarithms

* Do NOT ignore:
* Non-multiplicative and non-additive constants (e.g. in exponents, bases of exponents)
* Logarithms themselves

* Examples:
*4n + 5
* 0.5nlogn + 2n + 7
« n3+ 2"+ 3n
 nlog(10n?)

More Examples

* |s each of the following True or False?
*4+3n€ 0(n)
*n+ 2logn € 0(logn)
*logn+2¢€ 0(1)
- n°Y € 0(1.1M)
« 3" € (2"

Common Categories

* 0(1) “constant”

* O(logn) “logarithmic”
* 0(n) “linear”

* O(nlogn) “log-linear”

« 0(n?) “quadratic”

* 0(n3) “cubic”

* 0(n*) “polynomial”
e O(k™) “exponential”

Defining your running time function

* Worst-case complexity:
* max number of steps algorithm takes on “most challenging” input

* Best-case complexity:
* min number of steps algorithm takes on “easiest” input

* Average/expected complexity:
e avg number of steps algorithm takes on random inputs (context-dependent)

* Amortized complexity:

* max total number of steps algorithm takes on M “most challenging”
consecutive inputs, divided by M (i.e., divide the max total sum by M).

	Slide 1: CSE 332 Autumn 2023 Lecture 2: Algorithm Analysis pt.2
	Slide 2: Why Do resource Analysis?
	Slide 3: Goals for Algorithm Analysis
	Slide 4: Worst Case Running Time Analysis
	Slide 5: Worst Case Running Time - Example
	Slide 6: Worst Case Running Time – Example 2
	Slide 7: Worst Case Running Time – General Guide
	Slide 8: Searching in a Sorted List
	Slide 9: Faster way?
	Slide 10
	Slide 11: Comparing
	Slide 12: Comparing Running Times
	Slide 13
	Slide 14: Asymptotic Notation
	Slide 15: Asymptotic Notation Example
	Slide 16: Asymptotic Notation Example
	Slide 17: Asymptotic Notation Example
	Slide 18: Asymptotic Notation Example
	Slide 19: Asymptotic Notation Example
	Slide 20: Asymptotic Notation Example
	Slide 21: Gaining Intuition
	Slide 22: More Examples
	Slide 23: Common Categories
	Slide 24: Defining your running time function

