CSE 332 Autumn 2023

Lecture 26: P & NP

Nathan Brunelle
http://www.cs.uw.edu/332



http://www.cs.uw.edu/332

Tractability m a

e Tractable: /
e Feasible to solve in the “real world”

* Intractable:
* Infeasible to solve in the “real world”
 Whether a problem is considered “tractable” or “intractable” depends on
the use case
* For machine learning, big data, etc. tractable might mean O(n) or even O (logn)
* For most applications it’s more like 0(n3) or 0(n?)
* A strange pattern:

* Most “natural” problems are either done in small-degree polynomialﬁe.g.i or
else exponential time (e.g. 2™)

* It’s rare to have problems which require a running time of n°>, for example

A
A




Complexity Classes

—
¢ A Complgxity Clahs)s is a Eet of problems (e.g. sorting, wh,
Hamiltenian-pat|

* The problems included in a complexity class are those whose most efficient
algorithm has a specific upper bound on its running time (or memory use, or...)

* Examples:

* The set of all problems that can be solved by an algorithm with running time O (n)

* Contains: Finding the minimum of a list, finding the maximum of a list, buildheap, summing a
list, etc.

* The set of all problems that can be solved by an algorithm with running time 0(n?)
* Contains: everything above as well as sorting, Euler path

* The set of all problems that can be solved by anaigorithm with running time, 0 (n!)
* Contains: everything we’ve seen in this class so far 7\

——



Complexity Classes and Tractability

bt

* To explore what problems are and are not tractable, we give some

complexity classes special names: > = /7
« Complexity Class P: /) )7 )
e Stands for “Polynomial” / /

* The set of problems which have an algorithm wHose running time is (nP) for some
choice of p € R.

* We say all problems belonging to P are “Tractable”
* Complexity Class EXH:

 Stands for “Exponentia ==
* The set of problems which have an algorithm whose running time is 0( : for

some choice of p € R
* We say all problems belonging tore “Intractable”
* Disclaimer: Really it’s all problems outside of P, and there are problems which do not belong

to EXP, but we’re not going to worry about those in this class

|H




Important!
P c EXP

EXP a N d P Every problem within P is also within EXP

l ) - The intractable ones are the problems within EXP but NOT P

WC‘L\\/%

P
Polynomial

Upper bounded by nP

Tractable




Important!
Some of the problems listed in EXP could also be members of P
I\/I em b ers Since membership is determined by a problem’s most efficient
algorithm, knowing if a problem belongs to P requires knowing
the best algorithm possible!

Shortest Path
Euler Pa’@




Studying Complexity and Tractability

* Organizing problems into complexity classes helps us to reason more
carefully and flexibly about tractability

\_/ . .
* The goal for each/problem is to either
* Find an efficientalgorithm if it exists
* i.e. show it belongs to P

. Prove@at no efficient algorithm exists
. T \____J
* j.e. show it does not belong to P

* Complexity classes allow us to reason about sets of problems at a
time, rather er than each problem individually

* If we can find more precise classes to organize problems into, we might be
able to draw conclusions about the entire class

* |t may be easier to show a problem belongs to class C than to P, so it may
help to show that C € P




Some problems in EXP,seem “easier”

/

* There are some problems that we do not have polynomial time
algorithms to solve, but provided answers are easy to check

——— ~—

e Hamiltonian Path:

* |t's “hard” to look at a graph and determine whether it has a Hamiltonian
Path

* |t's “easy” to look at a graph and a candidate path together and determine
whether THAT path is a W

* |t's easy to verify whether a given path is a{bnﬂ}nia_n_%




Class&’

The set ems for which a candidate solution can b
polynomial ti

 Stands for ’Non—determinis%c olynomial”

e Corresponds to algorithms that can guess 3 solution (if it exists), that solution is then
verified to be correct in polynomial time

* Can also think of as allowing a special operation that allows the algorithm to magically
guess the right choice at each step of an exhaustive search

*PC NP
* Why?




NP

7///\4 V/\ Nondeterministic Polynomial
P Verified in nP time

Polynomial
Upper bounded by nP




Solving and Verifying Hamiltonian Path € /V/O

* Give an algorithm to solve Hamiltonian Path

* Input: G = (V,E)
. Outp&tﬂ‘m?i‘ﬁG—lJas a Hamiltonian Path

 Algorithm: Check whether each permutation of V is a path.
* Running time:_|V|!, so does not show whether it belongs to P

* Give an algorithm to verify Hamiltonian Path

. |npu&ﬂ‘,/l:‘) and a sequence of nodes

e Qutput:\True if that sequence of nodes is a Hamiltonian Path
. \/\ /-—"'—l

e Algorithm:

e Check that each Eggle appears in tl}e sequence exactly onceJ

e Check that the/seque i
* Running timew@, so it belongs to NP




Party Problem

| W - Draw Edges between people who don’t get along
v How many people can | invite to a party if everyone must get along?
- ,

12



W} Set

-dndependgﬂgset

.\SE/V‘IS an independent set if no Whare an edge

* Independent Set Problem:

\
* Given a graph G = (V,E) and a number k, determine whether there is an

independentset-S-ofsize k -
i

—_—————



14



m and \L/_em Indepen?duent Set

* Give an algorithm to solve independent set

* Input:/G = (V,E)and a num/bﬂ/ V
e Output: True if G has an independent set of size k

* Give an algorithm to verify independent set

. InpuE.g_1 (V, E),anumberk, and asetS € V

e Output: True if S is an independent set of size k
N— —




Generalized Baseball /;7\
\




Generalized Baseball

Need to place defenders on bases
such that every %Ts defended

How many defenders would suffice?

17



Mover

* Vertex Cover:
« C € Visavertex cover if every edge in E has one of its endpoints in C
. &/e/rtex Cover Rroblem: -
* Given a graph G_=(I/, E) and a number k, determine if there is a vertex
cover C of size k —

_—




Example

Vertex cover of size 5

19



Solving and Verifying Vertex Cover & /L7 )~

* Give an algorithm to solve vertex cover é[/

* Input{ G = (V, E) and a number k
e Qutput: True if G has a vertex cover of 5|ze
* Give an algorithm to verify vertex cover
* Input: ¢ = (V,E),anumber k, and a set@g E

e QOutput: True if S is a vertex cover of size k

7
E e



EXPODONP2OP

P=NPorP cNP

Hamiltonian Path
Cryptography
Prime factorization NP

Sorting « o . .
chortect et N Nondeterministic Polynomial
P uler Path Verified in nP time
Polynomial

Upper bounded by nP

(]
N,
Y
-
5

L]

L2
...
Y
L2



Way Cooll /

S is an independent set of G iff V — S is a vertex cover of G

N

Independent Se \— ,:
) 2 \J \ Vertex Cover[

22



Way Cool!

S is an independent set of G iff V — S is a vertex cover of G

\> &rtex Cov%r Independent Setj

&

23



Solving Vertex Cover and Independent Set

* Algorithm to solve vertex cover
* Input: G = (V,E) and a number k__
* Output: True if G has a vertex cover o
* Check if there is an Independent Set of G of size |[V| — k (

* Algorithm to solve independent set
* Input: ¢ = (V,E) and a number k
e Qutput: True if G has an independent set of size k

e Check if thereis a wof G of size |V| — k \

/7 Either both problems belong
to P, or else neither does!




NP-Complete
L\J /

A set of&together they stand, together they fall/ problems

* The problems in this set either all belong to P, or none of them do

. Intumvely, the ha\rdest problems in !}If/

* Collection of problems from NP thatcan all be “transformed” into
each other in polynomial time —

* Like we could transform independent set to vertex cover, and vice-versa

* We can also transform vertex cover into Hamiltonian path, and Hamiltonian
path into independent set, and ...



EXP D NP — Complete 2 NP 2 P

P = NP iff some problem from
NP — Complete belongs to P

ﬂ&— Checker
Go
: Chess
er

Hamiltonian Path (O

%& %})2

/) // / ryptography \
Wion
Sorting
Shortest Path
\ S— Euler Path
= |




Overview

* Problems not belonging tcziﬁre considered intractable

* The problems within NP have some properties that make them seem
like they might be tractable, but we’ve been unsuccessful with finding
polynomial time algorithms for many -

* The class NP — Complete/contains problems with the properties:

* All members are also members of NP

« All members of NP can be transformed into every member of NP —
Complete o

* Therefore if any one member of NP — Complete belongs to P, thenf’ﬂ/

/_\




Why should YOU care?

u can find a polynomial time algorithm for any NP — Complete problem then:
* You will WWLQn\

You will win awm
* You will be world famous

* You will have done something thaWarth has been able to do in spite of the
above!

* If you are told to write an algorithm a problem thatis NP — Complete
/ . . /\
* You can tell that person everything above to set expectations
. ' |
@ge the requirements! (

* Approximate the solution: Instead of finding a path that visits every node, find a path that visits
at least 75% of the nodes

* Add Assumptions: problem might be tractable if we can assume the graph is acyclic, a tree
* Use Heuristics: Write an algorithm that’s “good enough” for small inputs, ignore edge cases




	Slide 1: CSE 332 Autumn 2023 Lecture 26: P & NP
	Slide 2: Tractability
	Slide 3: Complexity Classes
	Slide 4: Complexity Classes and Tractability
	Slide 5: cap E cap X cap P  and cap P
	Slide 6: Members
	Slide 7: Studying Complexity and Tractability
	Slide 8: Some problems in cap E cap X cap P  seem “easier”
	Slide 9: Class cap N cap P 
	Slide 10: cap E cap X cap P superset of cap N cap P superset or equals cap P  
	Slide 11: Solving and Verifying Hamiltonian Path
	Slide 12: Party Problem
	Slide 13: Independent Set
	Slide 14: Example
	Slide 15: Solving and Verifying Independent Set
	Slide 16: Generalized Baseball
	Slide 17: Generalized Baseball
	Slide 18: Vertex Cover
	Slide 19: Example
	Slide 20: Solving and Verifying Vertex Cover
	Slide 21: cap E cap X cap P superset of cap N cap P superset or equals cap P  
	Slide 22: Way Cool!
	Slide 23: Way Cool!
	Slide 24: Solving Vertex Cover and Independent Set
	Slide 25: NP-Complete
	Slide 26: cap E cap X cap P superset of cap N cap P minus cap C o m p l e t e superset or equals cap N cap P superset or equals cap P  
	Slide 27: Overview
	Slide 28: Why should YOU care?

