CSE 332 Autumn 2023

Lecture 26: P & NP
Nathan Brun‘elf\/

http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

L)

Tractability Ve X 9\
* Tractable: é \J

e Feasible to solve in the “real world” %

* Intractable:

* |Infeasible to solve in the “real world” < 9

 Whether a problem is considered “tractable” or “intractable” depends on
the use case

* For machine learning, big data, etc. tractable might mean O(n) or even O (logn)
* For most applications it’s more like O(n3) or 0(n?)
* A strange pattern:

* Most @@%’ problems are either done in small-degree polynomial (e.g. n?) or
else exponential time (e.g. 2™)

* It’s rare to have problems which require a running time of n°>, for example

LCompIexity Classes (

* A Complexity Class is a set of problems (e.g. sorting, Euler path,
Hamiltonian path)

* The problems included in a complexity class are those whose most efficient
algorithm has a specific upper bound on its running time (or memory use, or...)

* Examples:

The set of all problems that can be solved by an algorithm with running time qz(
mming a

* Contains: Finding the minimum of a list, finding the maximum of a list, buildheap, su
list, etc.

* The set of all problems that can be solved by an algorithm with running time O(nz)}
* Contains: everything above as well as sorting, Euler path

* The set of all problems that can be solved by an algorithm with running time, O (n!)
* Contains: everything we’ve seen in this class so far j\Tj

Complexity Classes and Tractability

* To explore what problems are and are not tractable, we give some
complexity classes special names:)

» Complexity Class P\)\ %)S [
* Stands for “Polynomial” b
* The set of problems which have an algorithm whose running time is 0(&1;) for some
choice of p € R.

[
* We say all problems belonging to P are “Jractable” %\ A Z ‘)?
* Complexity Class EXP:

e Stands for /Exponentia
* The set of problems which have an a&(orithm whose running time is O 2”p) for
some choice of p € R

* We say all problems belonging to EXP re “Intractable”

* Disclaimer: Really it’s all problems outside of P, and there are problems which do not belong
to EXP, but we’re not going to worry about those in this class

|))

Important!
P c EXP

EXP a N d P Every problem within P is also within EXP

The intractable ones are the problems within EXP but NOT P

P

———=> Polynomial

Upper bounded by np]

Jractable, /

Important!
Some of the problems listed in EXP could also be members of P
I\/I em b ers Since membership is determined by a problem’s most efficient
— — algorithm, knowing if a problem belongs to P requires knowing
the best algorithm possible!

P % Sorting]
o hortest Path — 1
Euler Path O(| K

Tractable

StudyinggoLplexiX and Tractability
=

* Organizing problems into complexity classes helps us to reason more
carefully and flexibly about tractability

* The goal for each problem is to either
* Find an efficient algorithm if it exists
* j.e.show it belongsto P

* Prove that m@ient algorithm exists

* i.e. show it does not belongto P__

. gﬂnplexity classes allow us to reason about sets of problems at a
ime, rather than each problem individually

* |f we can find more precise classes to organize problems into, we might be
able to draw conclusions about the entire class

* |t may be easier to show a problem belongs to class C than to P, so it may
help to show that C € P

Some problems in EXP seem “easier”

\

* There are some problems that we do not have polynomial time
algorithms to solve, but provided answers are easy to check

* Hamiltonian Path:

* |t's “hard” to look at a graph and determine whether it has a Hamiltonian
&th

* It's “easy” to look at a graph and a candidate path together and determine

whether THAT path is a Hamiltonian Path

* It’s easy to verify whether a given path is a Hamiltonian path
L__\Y — __\

&vkl/f/) /IV’/OM%D@
s, e
'INES (oL N L YL

* The'set of problems for which a/candidate solution can be verified in
polynomial, time

JHe S
«“ W IR |7
 Stands for {Non-deterministic/Polynomial

Class

NP

@M%jolynomial

P Verified | time
omia

ounded by nP

Solving and Verifying Hamiltonian Path = /\//
_———

* Give an algorithm to solve Hamiltonian Path
. Input:L(;:_(K@)
* Output: True if G ha iltonian Path
e Algorithm: Check whether each permutation of V is a path.

* Running time: |V|!,t show whether it belongs to P
* Give an algorithm td/verify Mamiltonian Path
* Input: G = (V, E) and==s€quence of nodes
e Output: True if that sequence of nodes is a Hamiltonian Path
e Algorithm: -

* Check that each fiode appears in the seguggce exactly&’/ —

* Check that the sequence is acpath|
* Runningtime: O(V - E), so it belongs to NP

Party Problem

| \ Draw Edges between people who don’t get along
7. How many people can | invite to a party if everyone must get along?
. | v

12

Independent Set

* Independent set:
¥? is an independent set if no two nodes in S share an edge

.Wt Set Problem:

* Given a graph G =4F)and a number k, determine whether there is an
independent set S of size k - —

_/

\

Independent set of size 6

14

Solving and Verifyin;ndgpendent Set 6/02:1

* Give an algorithm to solve independent set
* Input: G = (V,E)and a number k__ (/
. Output:\Tr_Lﬂ_G has an independent set of size k

* Give an algorithm towerify independent set
. Input:G\= (V,E),anumherk,andasetS SV
e OQutput: True if S7is an independent setof size k

O ls|=—%&7

/rlzﬁf\

Generalized Baseball

Generalized Baseball

Need to place defenders on bases
such that every edge is defended
< — _/
How many defenders would suffice?
-

DN

17

Vertex Cover

* Vertex Cover:
. g [] [] [] E [] [] []
LE/V/,IS a vertex cover if every edge in E has one of its endpoints in C

—/

e \Vertex Cover Problem:

vEItER 1O
* Given a graph G = (V,E) and a number k, determine if there is a vertex
cover C of sizek — —

_\

Example

Vertex cover of size 5

19

Solving and Veritying Vertex Cover & /(/fﬁ

* Give an algorithm to solve vertex cover
* Input: ¢ = (V,E) and a number k
e Output: True if G has a vertex cover of size k

* Give an algorithm to verify vertex cover
* Input: ¢ = (V,E),anumberk,andasetS C E
e Output: True if S is a vertex cover of size k

EEN
0 B

EXPODONP2OP

P=NPorP cNP

Vertex Cover
Independent Set
Hamiltonian Path
Cryptography

Prime factorization NP

Nondeterministic Polynomial
erified in nP time

Sorting
Shortest Path

P Euler Path

Polynomial
Upper bounded by nP

v
LI
Y
5
-

L2
...
Y
L2

Way Cool!
/ S is an independent set of G iff V — S is a vertex cover of G

é / 4 / é
Independent Set
— Vertex Cover

22

Way Cool!

S is an independent set of G iff V — S is a vertex cover of G

\
~—
% Vertex Cover Independent Set [/ 5
—
— B

Z
=

23

Solving Vertex Cover and Independent Set

ENF T & A

* Algorithm to solve vertex cover

» Input;,G = (V, E)\and a number k

[
e Qutput: True if G has a vertex cover of size k
* Check if there is an Independent Set of G of sme% (L_\

* Algorithm to solve independent set

* Input: ¢ = (V,E) and a number k.

e Output: True if G has an independent set of size k
* Check if there is a Vertex Cover of G of size |V| —

Either both problems belong
to P, or else neither does!

\NP-Complete \

* A set of Ztogether they stand, together they faJl” problems

* The problems in this set either all belong to P or none of them do
* Intuitively, the “hardest” problems in NP

\

* Collection of problems from NP that can all be “transformed” into
each other in polynomial time
* Like we could transform independent set to vertex cover, and vice-versa

* We can also transform vertex cover into Hamiltonian path, and Hamiltonian
path into independent set, and ...

EXP D NP — Complete 2 NP 2 P

P = NP iff some problem from
NP — Complete belongs to P

\ [—— |
wertex cover

Independent Set
Hamiltonian Path

\>

ryptography

\ C AN

b
Sorting
P Shortest Path ‘

Euler Path

I
D~
@
e

L

Overview

* Problems not belonging tocfjare consideredﬁc@_ctable

* The problems within NP have some properties that make them seem
_like they might be tractable, but we’ve been unsuccessful with finding

polynomial time algorithms for many

* The class NP — Complete contains problems with the properties:

* All members are also members of NP
* All members o P can be transformed into every member of NP — 42

S7

@mp@
* Therefore if any one member offy NP — Complete belongs to P, then:P NP ‘

Why should YOU care?

* If you can find a polynomial time algorithm for any NP — Complete problem then:
* You will win $1million dg_gﬂ7 P
* You will win a Turing Award <
* You will be world famous

* You will have e something that no one else on Earth has been able to do in spite of the
above!

* If you are told to write an algorithm a problem that is[NP — Complete

* You can tell that person everything above to set expectations
* Change_the requirements!
\

* Approximate the solution| Instead of finding a path that visits every node, find a path that visits
at leas en

@dd Assumptions: problem might be tractable if we can assume the graph is acyclic, a tree
\Use Heuristics: Write an algorithm that’s “good enough” for small inputs, ignore edge cases

————

	Slide 1: CSE 332 Autumn 2023 Lecture 26: P & NP
	Slide 2: Tractability
	Slide 3: Complexity Classes
	Slide 4: Complexity Classes and Tractability
	Slide 5: cap E cap X cap P and cap P
	Slide 6: Members
	Slide 7: Studying Complexity and Tractability
	Slide 8: Some problems in cap E cap X cap P seem “easier”
	Slide 9: Class cap N cap P
	Slide 10: cap E cap X cap P superset of cap N cap P superset or equals cap P
	Slide 11: Solving and Verifying Hamiltonian Path
	Slide 12: Party Problem
	Slide 13: Independent Set
	Slide 14: Example
	Slide 15: Solving and Verifying Independent Set
	Slide 16: Generalized Baseball
	Slide 17: Generalized Baseball
	Slide 18: Vertex Cover
	Slide 19: Example
	Slide 20: Solving and Verifying Vertex Cover
	Slide 21: cap E cap X cap P superset of cap N cap P superset or equals cap P
	Slide 22: Way Cool!
	Slide 23: Way Cool!
	Slide 24: Solving Vertex Cover and Independent Set
	Slide 25: NP-Complete
	Slide 26: cap E cap X cap P superset of cap N cap P minus cap C o m p l e t e superset or equals cap N cap P superset or equals cap P
	Slide 27: Overview
	Slide 28: Why should YOU care?

