CSE 332 Autumn 2023
Lecture 26: P & NP

Nathan Brunelle
http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Tractability

e Tractable:
* Feasible to solve in the “real world”

* Intractable:
* Infeasible to solve in the “real world”
 Whether a problem is considered “tractable” or “intractable” depends on
the use case
* For machine learning, big data, etc. tractable might mean O(n) or even O (logn)
* For most applications it’s more like 0(n3) or 0(n?)
* A strange pattern:

* Most “natural” problems are either done in small-degree polynomial (e.g. n?) or
else exponential time (e.g. 2™)

* It’s rare to have problems which require a running time of n°>, for example

Complexity Classes

* A Complexity Class is a set of problems (e.g. sorting, Euler path,
Hamiltonian path)

* The problems included in a complexity class are those whose most efficient
algorithm has a specific upper bound on its running time (or memory use, or...)

* Examples:

* The set of all problems that can be solved by an algorithm with running time O (n)

* Contains: Finding the minimum of a list, finding the maximum of a list, buildheap, summing a
list, etc.

* The set of all problems that can be solved by an algorithm with running time 0(n?)
* Contains: everything above as well as sorting, Euler path

* The set of all problems that can be solved by an algorithm with running time O (n!)
* Contains: everything we’ve seen in this class so far

Complexity Classes and Tractability

* To explore what problems are and are not tractable, we give some
complexity classes special names:

* Complexity Class P:

e Stands for “Polynomial”

* The set of problems which have an algorithm whose running time is O (n?) for some
choice of p € R.

* We say all problems belonging to P are “Tractable”

* Complexity Class EXP:

e Stands for “Exponentia

* The set of problems which have an algorithm whose running time is 0(2"p) for
some choiceof p € R

* We say all problems belonging to EXP — P are “Intractable”

* Disclaimer: Really it’s all problems outside of P, and there are problems which do not belong
to EXP, but we’re not going to worry about those in this class

|H

Important!
P c EXP

EXP a N d P Every problem within P is also within EXP

The intractable ones are the problems within EXP but NOT P

P
Polynomial
Upper bounded by nP

Tractable

Important!
Some of the problems listed in EXP could also be members of P
I\/I em b ers Since membership is determined by a problem’s most efficient
algorithm, knowing if a problem belongs to P requires knowing
the best algorithm possible!

Sorting
Shortest Path
Euler Path

Tractable

Studying Complexity and Tractability

* Organizing problems into complexity classes helps us to reason more
carefully and flexibly about tractability

* The goal for each problem is to either
* Find an efficient algorithm if it exists
* i.e. show it belongs to P

* Prove that no efficient algorithm exists
* j.e.show it does not belong to P

* Complexity classes allow us to reason about sets of problems at a
time, rather than each problem individually

* If we can find more precise classes to organize problems into, we might be
able to draw conclusions about the entire class

* |t may be easier to show a problem belongs to class C than to P, so it may
help to show that C € P

Some problems in EXP seem “easier”

* There are some problems that we do not have polynomial time
algorithms to solve, but provided answers are easy to check

e Hamiltonian Path:

* |t's “hard” to look at a graph and determine whether it has a Hamiltonian
Path

* |t's “easy” to look at a graph and a candidate path together and determine
whether THAT path is a Hamiltonian Path

* It’s easy to verify whether a given path is a Hamiltonian path

Class NP

* NP
* The set of problems for which a candidate solution can be verified in
polynomial time

 Stands for “Non-deterministic Polynomial”

* Corresponds to algorithms that can guess a solution (if it exists), that solution is then
verified to be correct in polynomial time

* Can also think of as allowing a special operation that allows the algorithm to magically
guess the right choice at each step of an exhaustive search

*PC NP
* Why?

EXPODONP2OP

NP

Nondeterministic Polynomial
P Verified in n? time
Polynomial

Upper bounded by nP

....
....
L 4

L2
...
Y
L2

Solving and Verifying Hamiltonian Path

* Give an algorithm to solve Hamiltonian Path
* Input: ¢ = (V,E)
e Output: True if G has a Hamiltonian Path

e Algorithm: Check whether each permutation of V is a path.
* Running time: |V|!, so does not show whether it belongs to P

* Give an algorithm to verify Hamiltonian Path
* Input: ¢ = (V, E) and a sequence of nodes
e Output: True if that sequence of nodes is a Hamiltonian Path
e Algorithm:
* Check that each node appears in the sequence exactly once

* Check that the sequence is a path
* Runningtime: O(V - E), so it belongs to NP

Party Problem

| \ Draw Edges between people who don’t get along
A How many people can | invite to a party if everyone must get along?
. | v

12

Independent Set

* Independent set:
e S € Visanindependent set if no two nodes in S share an edge

* Independent Set Problem:

* Given a graph G = (V,E) and a number k, determine whether there is an
independent set S of size k

Independent set of size 6

14

Solving and Verifying Independent Set

* Give an algorithm to solve independent set
* Input: ¢ = (V,E) and a number k
e Qutput: True if G has an independent set of size k

* Give an algorithm to verify independent set
* Input: G = (V,E),anumber k,andasetS €V
e Output: True if S is an independent set of size k

Generalized Baseball

Generalized Baseball

Need to place defenders on bases

such that every edge is defended
Q How many defenders would suffice?

/

Vertex Cover

* Vertex Cover:
« C € Visavertex cover if every edge in E has one of its endpoints in C

e \Vertex Cover Problem:

* Given a graph G = (V,E) and a number k, determine if there is a vertex
cover C of size k

Example

Vertex cover of size 5

19

Solving and Verifying Vertex Cover

* Give an algorithm to solve vertex cover
* Input: ¢ = (V,E) and a number k
e Qutput: True if G has a vertex cover of size k

* Give an algorithm to verify vertex cover
* Input: G = (V,E),anumberk,andasetS C E
e Output: True if S is a vertex cover of size k

EXPODONP2OP

P=NPorP cNP

Vertex Cover
Independent Set
Hamiltonian Path
Cryptography

Prime factorization NP

Nondeterministic Polynomial
Verified in n? time

Sorting
Shortest Path
P Euler Path

Polynomial
Upper bounded by nP

v
LI
Y
5
-

L2
...
Y
L2

Way Cool!

S is an independent set of G iff V — S is a vertex cover of G

Independent Set

Vertex Cover

22

Way Cool!

S is an independent set of G iff V — S is a vertex cover of G

Vertex Cover Independent Set

Z
=

23

Solving Vertex Cover and Independent Set

* Algorithm to solve vertex cover
* Input: ¢ = (V,E) and a number k

e Qutput: True if G has a vertex cover of size k
* Check if there is an Independent Set of G of size |V | — k

* Algorithm to solve independent set
* Input: ¢ = (V,E) and a number k

e Qutput: True if G has an independent set of size k
* Check if there is a Vertex Cover of G of size |V| — k

Either both problems belong
to P, or else neither does!

NP-Complete

* A set of “together they stand, together they fall” problems
* The problems in this set either all belong to P, or none of them do
* Intuitively, the “hardest” problems in NP

* Collection of problems from NP that can all be “transformed” into
each other in polynomial time
* Like we could transform independent set to vertex cover, and vice-versa

* We can also transform vertex cover into Hamiltonian path, and Hamiltonian
path into independent set, and ...

EXP D NP — Complete 2 NP 2 P

P = NP iff some problem from
NP — Complete belongs to P

Vertex Cover
Independent Set
Hamiltonian Path

Cryptography
Prime factorization

P Sorting
Shortest Path

Euler Path

IS
ey
5
Y

L

Overview

* Problems not belonging to P are considered intractable

* The problems within NP have some properties that make them seem
like they might be tractable, but we’ve been unsuccessful with finding

polynomial time algorithms for many

* The class NP — Complete contains problems with the properties:

* All members are also members of NP

* All members of NP can be transformed into every member of NP —
Complete

* Therefore if any one member of NP — Complete belongs to P, then P = NP

Why should YOU care?

* If you can find a polynomial time algorithm for any NP — Complete problem then:
* You will win SImillion
* You will win a Turing Award
* You will be world famous

* You will have done something that no one else on Earth has been able to do in spite of the
above!

* If you are told to write an algorithm a problem thatis NP — Complete
* You can tell that person everything above to set expectations
* Change the requirements!

* Approximate the solution: Instead of finding a path that visits every node, find a path that visits
at least 75% of the nodes

* Add Assumptions: problem might be tractable if we can assume the graph is acyclic, a tree
* Use Heuristics: Write an algorithm that’s “good enough” for small inputs, ignore edge cases

	Slide 1: CSE 332 Autumn 2023 Lecture 26: P & NP
	Slide 2: Tractability
	Slide 3: Complexity Classes
	Slide 4: Complexity Classes and Tractability
	Slide 5: cap E cap X cap P and cap P
	Slide 6: Members
	Slide 7: Studying Complexity and Tractability
	Slide 8: Some problems in cap E cap X cap P seem “easier”
	Slide 9: Class cap N cap P
	Slide 10: cap E cap X cap P superset of cap N cap P superset or equals cap P
	Slide 11: Solving and Verifying Hamiltonian Path
	Slide 12: Party Problem
	Slide 13: Independent Set
	Slide 14: Example
	Slide 15: Solving and Verifying Independent Set
	Slide 16: Generalized Baseball
	Slide 17: Generalized Baseball
	Slide 18: Vertex Cover
	Slide 19: Example
	Slide 20: Solving and Verifying Vertex Cover
	Slide 21: cap E cap X cap P superset of cap N cap P superset or equals cap P
	Slide 22: Way Cool!
	Slide 23: Way Cool!
	Slide 24: Solving Vertex Cover and Independent Set
	Slide 25: NP-Complete
	Slide 26: cap E cap X cap P superset of cap N cap P minus cap C o m p l e t e superset or equals cap N cap P superset or equals cap P
	Slide 27: Overview
	Slide 28: Why should YOU care?

