CSE 332 Winter 2024
Lecture 18: Graphs

Nathan Brunelle
http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Some Graph Terms

» Adjacent/Neighbors

* Nodes are adjacent/neighbors if they share an
edge

* Degree
* Number of “neighbors” of a vertex

* Indegree
 Number of incoming neighbors

e OQutdegree
* Number of outgoing neighbors

Graph Operations

* To represent a Graph (i.e. build a data structure) we need:

e Add Edge <—
e Remove Edge <
* Check if Edge Exists (—

*(Get Neighbors (incoming)
* Get Neig (outgoing)

Time/Space Tradeoffs

Space to represent: Q(@) %
Add Edge; ©(1)/

ove Edge; ©(deg(v))
Check if Edge Exists: O(deg(v))

et Neighbors (incoming): ®(n + m
et Neighbors (outgoing): @(deg(v))

AdJacenc List (We|ghted)

Time/Space Tradeoffs

Space to represent: O(n + m)
Add Edge: ©(1)

Remove Edge: ©(deg(v)) V| =n
Check if Edge Exists: O(deg(v)) |E| = m
Get Neighbors (incoming): ©®(n + m)
Get Neighbors (outgoing): @(deg(v))

Time/Space Tradeoffs

2
Space to represent: ©(?) V) C—

Add Edge: O(?)

Remove Edge: ©(?) __4/ 1 E V| =n

Check if Edge Exists: ©(?) |E| = m

Get Neighbors (incoming): ©(?) é—;\
Get Neighbors (outgoing): ©(?) V\

AdJacenc I\/Iatrlx (Welghted)

A
B
C
D
E

Time/Space Tradeoffs .

Space to represent: ©(n?) .

Add Edge: ©(1)

Remove Edge: (1) V| =n i

Check if Edge Exists: ©(1) E| =m '

Get Neighbors (incoming): ©(n)
Get Neighbors (outgoing): ©(n)

Aside

* Almost always, adjacency lists are the better choice

* Most graphs are missing most of their edges, so the adjacency list is
much more space efficient and the slower operations aren’t that bad

Definition: Path L[

A sequence of nodes (_l, Vo, eee, V)

Y “’ o

1

N N

Simple Path: Cycle:
A path in which each node A path which starts and {

appears at most once ends in the same place O

9

Definition: (Strongly) Connected Graph

A Graph ¢ = (V, E) s.t. for any pair of nodes

&%E I there is a path from v, to v, Z

Definition: (Strongly) Connected Graph

A Graph G = (V, E) s.t. for any pair of nodes
v, V, € V there is a path from v; to v,

Connected Not (strongly) Connected

11

Definition: Weakly Connected Graph

A Graph G = (V, E) s.t. for any pair of nodes
v, V, € V there is a path from v; to v,
ignoring direction of edges

Weakly Connected /l/d 7[—\Neak|y Connected

12

v

A Graph G = (V, E) s.t. for any pair of nodes
vl, v, € V there s an ed e from v1 to v,

N R K

Complete Complete Complete Directed

Undirected Graph erected Graph(r< WGraph

Definition: Complete Graph

13

Graph Density, Data Structures, Efficiency

 The maximum number of edges in a graph is O(|V|%):
VI(IlV|-1)

* Undirected and simple:
* Directed and simple: |V|(|V| —1)
* Direct and non-simple (but no duplicates): |V|?

* If the graph is connected, the minimum number of edges is [V| — 1
* If|E| € @(IVIZ) we say the graph is dense

o If @(_UL[D we say the graph is sparse u

* Because |E| is not always near to |V |? we do not typically substitute
|V |? for |E| in running times, but leave it as a separate variable

Definition: Tree

A Graph G = (V,E) is a treeif it is undirect,
connected, and has no cycles (i.e. is acyclic).
Often one node is identified as the “root”

A Rooted Tree

./

15

LBreadth—Firs Search

-W node s\
* Behavior: Start with node s, visit all neighbors of s, then all neighbors

of neighbors of s, ...
* Output:

(¢ _How long is the shortest path? J o Q/ &/
)
O

O

;p@

© O

16

void bfs(graph, s){
found = new Queue(); «—
found.enqueue(s); c—

mark s as “visited”; <«

AWhile (Ifound.isEmpty()){
current = found.dequeue();

7\ for (v : neighbors(current)){
& |f (! v marked “visited”){
mark v as “visited”;
found.enqueue(v);

Running time: O(|V| + |E|) & }
57
B 17

. int testPath h,s,t
Shortest Path (unweighted) Uorfsjndaz ,(]ge:szu—:-u—e)(i);

— layer = 0;
found.enqueue(s);
mark s as “visited”;

While (!found.isEmpty()){ s
current = found.dequeue();
Q \-// layer = depth of current; 22—

for (v : neighbors(current)){
if (! v marked “visited”){
mark v as “visited”;
\> depth of v = layer + 1;
Idea: when it’s seen, remember found.enqueue(v);
its “layer” depth! \ }
T }
— return depth of t;
} 18

Depth-First Search

Depth-First Search
* Input: anode s (/ 4:4 _L

* Behavior: Start with node s, visit one neighbor of s, then all nodes
reachable from that neighbor of s, then another neighbor of s,...

* Before moving on to the second neighbor of s, visit everything reachable
from the first neighbor of s

* Output:
* Does the graph have a cycle?
* A topological sort of the graph.

DFS (non-recursive) voiddfsigraph, s); C/

found = new Stack();
Oé/ found)-FiCs) i
@ .,
mark s as “visited”;
__While (!found.isEmpty()){

(9) \ 5 | current = found.pop();
/\ ® for (v : neighbors(current)){
f ® o) P - if (! v marked “visited”){
ﬁ % mark v as “visited”;
_ found.push(v);
Running time: O(|V| + |E|) \ }
}

21

DFS Recursively (more common)

void dfs(graph, curr){
mark curr as “visited”;
for (v : neighbors(current)){
if (! v marked “visited”){
dfs(graph, v);
}
}

mark curr as “done”;

22

Using DFS

e Consider the “visited times” and “done times”

* Edges can be categorized: Visited : 1 Visited : 2

o Done: 8 D -7
Tree Edge ON€: 7" Visited : 3

* (a, b) was followed when pushing Visited: 0 Done: 6
* (a,b) when b was unvisited when we were at a Done: 15

e Back Edge
* (a,b) goes to an “ancestor”

* a and b visited but not done when we saw (a, b)

* lyisited (b) < Lyisited (a) < Ldone (a) < taone (D) Visited : 9

* Forward Edge Done: 14 ~
* (a,b) goes to a “descendent” Visited : 4
* b was visited and done between when a was visited and done Done: 12 Done: 5

¢ tvisited (a) < tvisited (b) < tdone (b) < tdone (a)

(a, b) goes to a node that doesn’t connect to a
b was seen and done before a was ever visited

¢ tdone(b) < lyisited (a) 23

Back Edges

e Behavior of DFS:

. ”M_isit/everything reachable from the current node before going back”
\
* Back Edge: —

*. The current node’s neighbor is an “in progress” node
. \77——" " . .
 Since that other node is “in progress”, the current node is reachable from it

* The back edge is a path to that other node

ldea: Look for a back edge!

Cycle Detection ——

_/>boolean hasCycle(graph, curr){
mark curr as “visited”;

cycleFound = false; Z

for (v : neighbors(current)){ /

@ @ if (v marked “visited” && ! v marked “done”){
cycleFound=true;

Q ! -
9 if (! v marked “visited” && !cycleFound){
e cycleFound = hasCycle(graph, v);
O @ }
}

mark curr as “done”;
return cycleFound;

} 2

Single-Source Shortest Path,

ff s

SR

International

= '5'

15

Find the quickest way to get from UVA to each of these other places

Given agraph G = (V,E) and astart node s € V, for each v € V find
the least-weight path from s = v (call this weight § (s, v))

(assumption: all edge weights are positive)

26

L_D/ijk&raﬁ Algorithm

* Input: graph with no negative edge weights, start node s, end node ¢t

* Behavior: Start with node s, repeatedly go to the incomplete node
“nearest” to s, stop when

* Output;:
g (D—E—(2)
e Distance from start to end 10 6
» Distance from start to every node @ / @
9
@ > 9
12 3
@ 1

Dijkstra’s Algorithm

Start: O .
ldea: When a node is the closest
End: 8 . .
undiscovered thing to the start,
we have found its shortest path
Node Done? Node Distance
0 F 0 0
1 F 1 * 1o AD—E—(4) "
2 F 2 00 @
y)
3 F 3 = O . © : 2
4 F 4 o 2 Q
5 : 5 o0 12 o 3\,
6 F 6 00 11
7 F 7 0 1 @ 7 @
8 F 8 00

28

Dijkstra’s Algorithm

>tart: 0 ldea: When a node is the closest
End: 8 . .
undiscovered thing to the start,
we have found its shortest path
Node Done? Node Distance
0 T 0 0
1 F 1 10 1o AD=E—(2) i
2 F 2 12 , @)
3 F 3 00 9 2
4 F 4 o (3) ’ 9 ®
5 F 5 00 12 @ 3 .
6 F 6 00 11
7 F 7 00 1 @ 7 @
8 F 8 0

29

Dijkstra’s Algorithm

Start: O

End: 8
Node Done? Node Distance
0 T 0 0
1 T 1 10
2 F 2 12
3 F 3 00
4 F 4 18
5 F 5 00
6 F 6 00
7 F 7 ¢'e)
8 F 8 00

ldea: When a node is the closest
undiscovered thing to the start,
we have found its shortest path

30

Dijkstra’s Algorithm

Start: O

End: 8
Node Done? Node Distance
0 T 0 0
1 T 1 10
2 T 2 12
3 F 3 15
4 F 4 18
5 F 5 13
6 F 6 00
7 F 7 ¢'e)
8 F 8 00

ldea: When a node is the closest
undiscovered thing to the start,
we have found its shortest path

31

Dijkstra’s Algorithm

Start: 0

End: 8
Node Done? Node Distance
0 T 0 0
1 T 1 10
2 T 2 12
3 F 3 14
4 F 4 18
5 T 5 13
6 F 6 00
7 F 7 20
8 F 8 00

ldea: When a node is the closest
undiscovered thing to the start,
we have found its shortest path

32

Dijkstra’s Algorithm

int dijkstras(graph, start, end){ 10 @ 2
distances = [0, 0, 0,...]; // one index per node
=] alse,...]; // one index per node Q y
PQ = new minheap(); y @

PQ.insert(0, start); // priority=0, value=start

12
distances[start] = 0O; @ ’ 3
while (IPQ.isEmpty){
current = PQ.deleteMin(); 1 @

done[current] = true;
for (neighbor : current.neighbors){
if ('done[neighbor]){
new_dist = distances[current]+weight(current,neighbor);
if new_dist < distances[neighbor]{
distances[neighbor] = new_dist;
PQ.decreaseKey(new_dist,neighbor); }

}
}

return distances[end]

33

Dijkstra’s Algorithm: Running Time

* How many total priority queue operations are necessary?
* How many times is each node added to the priority queue?
 How many times might a node’s priority be changed?

 What's the running time of each priority queue operation?

e Overall running time:
* O(|E]log|V])

Dijkstra’s Algorithm: Correctness

* Claim: when a node is removed from the priority queue, we have
found its shortest path

* Induction over number of completed nodes
* Base Case:
* Inductive Step:

Dijkstra’s Algorithm: Correctness

e Claim: when a node is removed from the
priority queue, its distance is that of the
shortest path

* Induction over number of completed nodes

* Base Case: Only the start node removed
* |tis indeed 0 away from itself

* Inductive Step:

* |f we have correctly found shortest paths for the first
k nodes, then when we remove node k + 1 we have
found its shortest path

Dijkstra’s Algorithm: Correctness

e Suppose a is the next node removed from the
queue. What do we know bout a?

37

Dijkstra’s Algorithm: Correctness

e Suppose a is the next node removed from the queue.

* No other node incomplete node has a shorter path
discovered so far

* Claim: no undiscovered path to a could be shorter

e Consider any other incomplete node b that is 1 edge away
from a complete node

* ais the closest node that is one away from a complete node
e Thus no path that includes b can be a shorter path to a

* Therefore the shortest path to a must use only complete
nodes, and therefore we have found it already!

Dijkstra’s Algorithm: Correctness

e Suppose a is the next node removed from the queue.

* No other node incomplete node has a shorter path
discovered so far

* Claim: no undiscovered path to a could be shorter

e Consider any other incomplete node b that is 1 edge away
from a complete node

* ais the closest node that is one away from a complete node
* No path from b to a can have negative weight
e Thus no path that includes b can be a shorter path to a

* Therefore the shortest path to a must use only complete
nodes, and therefore we have found it already!

	Slide 1: CSE 332 Winter 2024 Lecture 18: Graphs
	Slide 2: Some Graph Terms
	Slide 3: Graph Operations
	Slide 4: Adjacency List
	Slide 5: Adjacency List (Weighted)
	Slide 6: Adjacency Matrix
	Slide 7: Adjacency Matrix (weighted)
	Slide 8: Aside
	Slide 9: Definition: Path
	Slide 10: Definition: (Strongly) Connected Graph
	Slide 11: Definition: (Strongly) Connected Graph
	Slide 12: Definition: Weakly Connected Graph
	Slide 13: Definition: Complete Graph
	Slide 14: Graph Density, Data Structures, Efficiency
	Slide 15: Definition: Tree
	Slide 16: Breadth-First Search
	Slide 17: BFS
	Slide 18: Shortest Path (unweighted)
	Slide 19: Depth-First Search
	Slide 20: Depth-First Search
	Slide 21: DFS (non-recursive)
	Slide 22: DFS Recursively (more common)
	Slide 23: Using DFS
	Slide 24: Back Edges
	Slide 25: Cycle Detection
	Slide 26: Single-Source Shortest Path
	Slide 27: Dijkstra’s Algorithm
	Slide 28: Dijkstra’s Algorithm
	Slide 29: Dijkstra’s Algorithm
	Slide 30: Dijkstra’s Algorithm
	Slide 31: Dijkstra’s Algorithm
	Slide 32: Dijkstra’s Algorithm
	Slide 33: Dijkstra’s Algorithm
	Slide 34: Dijkstra’s Algorithm: Running Time
	Slide 35: Dijkstra’s Algorithm: Correctness
	Slide 36: Dijkstra’s Algorithm: Correctness
	Slide 37: Dijkstra’s Algorithm: Correctness
	Slide 38: Dijkstra’s Algorithm: Correctness
	Slide 39: Dijkstra’s Algorithm: Correctness

