CSE 332 Winter 2024
Lecture 16: Radix Sort, Graphs

Nathan Brunelle
http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

L Time” Sorting Algorithms
W)

* Useable when you are able to make additional assumptions about the
contents of your list (beyond the ability to compare)
* Examples:

* The list contains only positive integers less than k
* The number of distinct values in the list is much smaller than the length of the list

* The running time expression will always have a term other than the
list’s length to account for this assumption

e Examples:
* Running time might be @(k - n) where k is the range/count of values

BucketSort

* Assumes the array contains integers between

other small range)
* |dea:

* Use each value as an index into an array of size k
* Add the item into the “bucket” at that index (e.g. linked list)

e Get so/rRed array by “appending” all the buc %] ¥
£\~ \
) >

3001213020»

w(or some

0

0

1

1

123
23 0[0]0
2

Ol O o o o
[HEN

BucketSort Running Time

* Create array of k buckets
* Either ©(k) or ®(1) depending on some things...

* Insert all n things into buckets
* 0(n)

* Empty buckets into an array
.« O(n + k)

e Overall:
e O(n+ k)

 When is this better than mergesort?

Properties of BucketSort

* In-Place?

[+No_/
e Adaptive?
* No

e Stable?
* Yes!

I

@adix

Sort

—)

S

e Radix: The base of a number system

 We'll use base 10, most implementatioﬁwill

* |dea:
\ * BucketSort by each digit, one at a time, from least significant to most significant

S L

use larger bases

103 | 801 | 401 | 323 | 255 | 823|999 | 101 | 113 | 901 | 555 | 512 | 245 | 800 | 018 | 121
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
N
? 801 103
Place each element into o1 323 22>
_ 800 | 101 | 512 | .°7 555 018 | 999
a “bucket” according to 901 113 245
its 1’s place 121
0 5 8 9

RadixSort

e Radix: The base of a number system

 We'll use base 10, most implementations will use larger bases

* BucketSort by each digit, one at a time, from least significant to most significant

e |dea:
801
401 ;gg 255
800|101 512 555 018 | 999
823
901 113 245
121
0 1 2 3 5 8 9

Place each element into
a “bucket” according to
its 10’s place

800
801
401 >121121 255
113 | 323 245 999
101 018 | 823 29>
901
103
0 1 2 4 5 9

e Radix: The base of a number system

RadixSort

 We'll use base 10, most implementations will use larger bases

* BucketSort by each digit, one at a time, from least significant to most significant

e |dea:
800
801
401 >1271121 255
113 | 323 245 999
101 018 | 823 =5
901
103
0 1 2 3 4 5 6 7 9

Place each element into
a “bucket” according to
its 100’s place

101

800
103 | 245 512 901
018 113 | 255 3231401 555 22; 999
121
0 1 2 3 4 5 8 9

wanson. > 75 Jel

e Radix: The base of a number system O\j]
 We'll use base 10, most |mplementat|ons will use Iarger bases

* |dea:
* BucketSort by each digit, one at a time, from least significant to most significant
101
800
103 | 245 512 901
0181 113 | 255 | 323 | 491 | 555 gg; 999 Convert back into an array
121

018 | 811|103 | 113 {121 | 245 | 255|323 (401|512 |555|800 (801 (823|901 |999

w Running Time (£ O

e Suppose largest value ism &\ & é
* Choose a radix (base of representation) b ~
* BucketSort all n things using-b buckets (/) o& (]L
N——
- O(n+k)

* Repeat once per each digit

. [logb m iterations

* Overall: ~
* O(nlog, m + blog, m) / / N

* |n practice, you can select the value of b to optimize running time
 When is this better than mergesort?

/0()<\

ARPANET

THEu

UNIVERSITY

11

MG d phS Vertices/Nodes
Definition: ¢ = (V, E)

Edges

V =1{1,234,5,6,7,8,9}
E ={(1,2),(2,3),(13),..}

12

Directed Graphs

Vertices/Nodes

Definition: ¢ = (V, E)

Edges

V =1{1,234,5,6,7,8,9}
E ={(1,2),(2,3),(13),..}

13

Selt-Edges and Duplicate Edges

Some graphs may have duplicate edges (e.g. here we have the edge (1,2) twice).
Some may also have self-edges (e.g. here there is an edge from 1 to 1).
Graph with Neither self-edges nor duplicate edges are called simple graphs

14

Welghted Gra P hS Vertices/Nodes
Definition: G = (V, E)

Edges

w(e) = weight of edge e
XB 8 V =1{1,2,3,4,5,6,7,8,9}

E =1{(1,2),(2,3),(1,3),...}

15

* For each application below, consider:

— . : What are the nodes, what are the edges?
Graph Applications & meh e

* Isthe graph simple?

* Isthe graph weighted?

Facebook friends
* Nodes: Accounts, Edges: Friendship
e Undirected
e Simple
* maybe

Twitter followers
* Nodes: Accounts, Edges: following
* Directed
* Simple
* maybe

Java inheritance
* Nodes: Classes, Edges: extends, implements
* Directed
* Simple
* Unweights

Airline Routes
* Nodes: Cities, edges: flights
* Directed
* Non-simple
* weight

Some Graph Terms

e Adjacent/Neighbors
* Nodes are adjacent/neighbors if they share an
edge

* Degree

— :
* Number of “neighbors” of a vertex

 Indegree < d
n° Nur:Ioeerofincominé/\lﬂrleeylaf< é/

e OQutdegree ~—
* Number of outgoing reighibors é

“dyer

Graph Operations

* To represent a Graph (i.e. build a data structure) we need:
* Add Edge
* Remove Edge
* Check if Edge Exists
e Get Neighbors (incoming)
* Get Neighbors (outgoing)

AdJacenc List

Time/Space Tradeoffs

Space to represent: O(n + m)
Add Edge: ©(1)

Remove Edge: (1) V| =n
Check if Edge Exists: O(n) |E| = m
Get Neighbors (incoming): ©®(n + m)
Get Neighbors (outgoing): @(deg(v))

19

AdJacenc List (We|ghted)

Time/Space Tradeoffs

Space to represent: O(n + m)
Add Edge: ©(1)

Remove Edge: ©(1) V| =n
Check if Edge Exists: O(n) |E| = m
Get Neighbors (incoming): ©(?)
Get Neighbors (outgoing): ©(?7)

20

Adjacency Matrix

Time/Space Tradeoffs
Space to represent: O(?)
Add Edge: ©(?)

Remove Edge: ©(?) V| =n
Check if Edge Exists: O(?) |E| = m
Get Neighbors (incoming): ©(?)
Get Neighbors (outgoing): ©(?)

21

AdJacenc I\/Iatrlx (Welghted)

A
B
C
D
E

Time/Space Tradeoffs .

Space to represent: ©(n?) .

Add Edge: ©(1)

Remove Edge: (1) V| =n i

Check if Edge Exists: ©(1) E| =m '

Get Neighbors (incoming): ©(n)
Get Neighbors (outgoing): ©(n)

22

Aside

* Almost always, adjacency lists are the better choice

* Most graphs are missing most of their edges, so the adjacency list is
much more space efficient and the slower operations aren’t that bad

Definition: Path

A sequence of nodes (vq, Uy, ..., Uk)
st.Vi1<i<k-1,(v;v;,,) EE

("‘\)

1

Simple Path: Cycle:
A path in which each node A path which starts and

appears at most once ends in the same place

24

Definition: (Strongly) Connected Graph

A Graph G = (V, E) s.t. for any pair of nodes
v, V, € V there is a path from v; to v,

25

Definition: (Strongly) Connected Graph

A Graph G = (V, E) s.t. for any pair of nodes
v, V, € V there is a path from v; to v,

Connected Not (strongly) Connected

26

Definition: Weakly Connected Graph

A Graph G = (V, E) s.t. for any pair of nodes
v, V, € V there is a path from v; to v,
ignoring direction of edges

Weakly Connected

Weakly Connected

27

Definition: Complete Graph

A Graph G = (V, E) s.t. for any pair of nodes
V4, V, € IV there is an edge from v; to v,

Complete Complete Complete Directed
Undirected Graph Directed Graph Non-simple Graph

28

Graph Density, Data Structures, Efficiency

 The maximum number of edges in a graph is O(|V|%):
VI(IlV|-1)

* Undirected and simple:
* Directed and simple: |V|(|V| —1)
* Direct and non-simple (but no duplicates): |V|?

* If the graph is connected, the minimum number of edgesis |V | — 1
e If |[E| € ©(]V|?) we say the graph is dense
 If |E| € O(]V|) we say the graph is sparse

* Because |E| is not always near to |V |? we do not typically substitute
|V |? for |E| in running times, but leave it as a separate variable

Definition: Tree

A Graph G = (V,E) is a treeif it is undirect,
connected, and has no cycles (i.e. is acyclic).
Often one node is identified as the “root”

A Rooted Tree

30

Breadth-First Search

* Input: a node s

* Behavior: Start with node s, visit all neighbors of s, then all neighbors
of neighbors of s, ...

* Output:
 How long is the shortest path?
* |s the graph connected? Q @

void bfs(graph, s){
BFS found = new Queue();

o ® found.enq:Je.u.e(s)’i
0 mark s as “visited”;

@) a3 While (!found.isEmpty()){
(9) current = found.dequeue();

O for (v : neighbors(current)){
® o) if (! v marked “visited”){
mark v as “visited”;
found.enqueue(v);

Running time: O(|V| + |E|) }

32

Shortest Path (unweighted)

ldea: when it’s seen, remember
its “layer” depth!

int shortestPath(graph, s, t){

found = new Queue();
layer = 0;
found.enqueue(s);
mark s as “visited”;
While (!found.isEmpty()){
current = found.dequeue();
layer = depth of current;
for (v : neighbors(current)){
if (! v marked “visited”){
mark v as “visited”;
depth of v = layer + 1;
found.enqueue(v);

)

}
return depth of t;

33

Depth-First Search

Depth-First Search

* Input: a node s

* Behavior: Start with node s, visit one neighbor of s, then all nodes
reachable from that neighbor of s, then another neighbor of s,...

* Output:
* Does the graph have a cycle? 1 5
» A topological sort of the graph.) ONE
o/
@
q3,

DFS (non-recursive)

O)
©
o @ o

3 & -

Running time: O(|V]| + |E|)

void dfs(graph, s){

found = new Stack();
found.pop(s);
mark s as “visited”;
While (!found.isEmpty()){
current = found.pop();
for (v : neighbors(current)){
if (! v marked “visited”){
mark v as “visited”;
found.push(v);

36

DFS Recursively (more common)

void dfs(graph, curr){
mark curr as “visited”;
for (v : neighbors(current)){
if (! v marked “visited”){
dfs(graph, v);
} | °

mark curr as “done”;

	Slide 1: CSE 332 Winter 2024 Lecture 16: Radix Sort, Graphs
	Slide 2: “Linear Time” Sorting Algorithms
	Slide 3: BucketSort
	Slide 4: BucketSort Running Time
	Slide 5: Properties of BucketSort
	Slide 6: RadixSort
	Slide 7: RadixSort
	Slide 8: RadixSort
	Slide 9: RadixSort
	Slide 10: RadixSort Running Time
	Slide 11: ARPANET
	Slide 12: Undirected Graphs
	Slide 13: Directed Graphs
	Slide 14: Self-Edges and Duplicate Edges
	Slide 15: Weighted Graphs
	Slide 16: Graph Applications
	Slide 17: Some Graph Terms
	Slide 18: Graph Operations
	Slide 19: Adjacency List
	Slide 20: Adjacency List (Weighted)
	Slide 21: Adjacency Matrix
	Slide 22: Adjacency Matrix (weighted)
	Slide 23: Aside
	Slide 24: Definition: Path
	Slide 25: Definition: (Strongly) Connected Graph
	Slide 26: Definition: (Strongly) Connected Graph
	Slide 27: Definition: Weakly Connected Graph
	Slide 28: Definition: Complete Graph
	Slide 29: Graph Density, Data Structures, Efficiency
	Slide 30: Definition: Tree
	Slide 31: Breadth-First Search
	Slide 32: BFS
	Slide 33: Shortest Path (unweighted)
	Slide 34: Depth-First Search
	Slide 35: Depth-First Search
	Slide 36: DFS (non-recursive)
	Slide 37: DFS Recursively (more common)

