CSE 332 Winter 2024 Lecture 15: Sorting

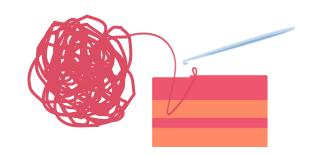
Nathan Brunelle

http://www.cs.uw.edu/332

Divide And Conquer Sorting

- Divide and Conquer:
 - Recursive algorithm design technique
 - Solve a large problem by breaking it up into smaller versions of the same problem

Divide and Conquer



If the problem is "small" then solve directly and return

• Divide:

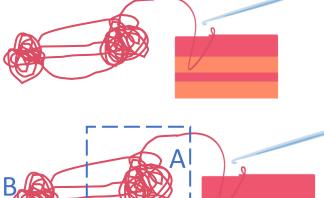
Break the problem into subproblem(s), each smaller instances

Conquer:

• Solve subproblem(s) recursively

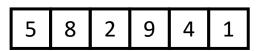
• Combine:

Use solutions to subproblems to solve original problem



Divide and Conquer Template Pseudocode

```
def my_DandC(problem){
   // Base Case
  if (problem.size() <= small_value){</pre>
    return solve(problem); // directly solve (e.g., brute force)
  // Divide
  List subproblems = divide(problem);
  // Conquer
  solutions = new List();
  for (sub : subproblems){
    subsolution = my DandC(sub);
    solutions.add(subsolution);
  // Combine
  return combine(solutions);
```



Merge Sort

5

• Base Case:

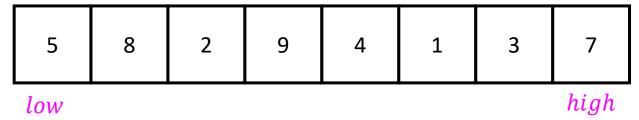
Divide:

- If the list is of length 1 or 0, it's already sorted, so just return it
- 5 8 2 9 4 1
- Split the list into two "sublists" of (roughly) equal length
- 2 5 8 1 4 9 Conquer:
 - Sort both lists recursively
- 2
 5
 8
 1
 4
 9

 1
 2
 4
 5
 8
 9
 - Combine:
 - Merge sorted sublists into one sorted list

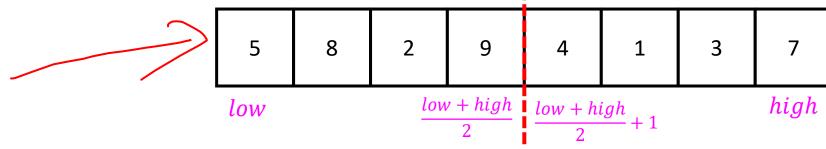
Merge Sort In Action!

Sort between indices *low* and *high*



Base Case: if low == high then that range is already sorted!

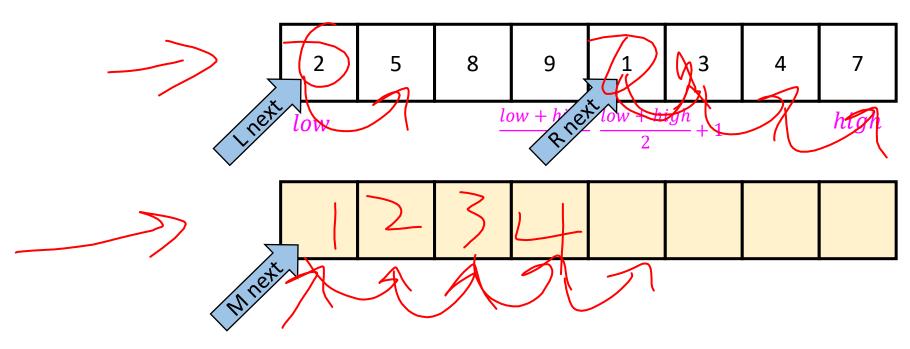
Divide and Conquer: Otherwise call mergesort on ranges $\left(low, \frac{low+high}{2}\right)$ and $\left(\frac{low+high}{2} + 1, high\right)$



After Recursion:

2	5	8	9	1	3	4	7
low							high

Merge (the combine part)



Create a new array to merge into, and 3 pointers/indices:

- L_next: the smallest "unmerged" thing on the left
- R_next: the smallest "unmerged" thing on the right
- M_next: where the next smallest thing goes in the merged array

One-by-one: put the smallest of L_next and R_next into M_next, then advance both M_next and whichever of L/R was used.

Merge Sort Pseudocode

```
void mergesort(myArray){
     ms helper(myArray, 0, myArray.length());
void mshelper(myArray, low, high){
     if (low == high){return;} // Base Case
     mid = (low+high)/2;
     ms_helper(low, mid);
     ms_helper(mid+1, high);
     merge(myArray, low, mid, high);
```

Merge Pseudocode

```
void merge(myArray, low, mid, high){
       merged = new int[high-low+1]; // or whatever type is in myArray
       I next = low;
       r next = high;
       m_next = 0;
       while (I_next <= mid && r_next <= high){
               if (myArray[l_next] <= myArray[r next]){</pre>
                        merged[m_next++] = myArray[l_next++];
               else{
                       merged[m_next++] = myArray[r_next++];
       while (l_next <= mid){ merged[m_next++] = myArray[l_next++]; }
       while (r next <= high){ merged[m next++] = myArray[r next++]; }
       for(i=0; i<=merged.length; i++){ myArray[i+low] = merged[i];}
```

Analyzing Merge Sort

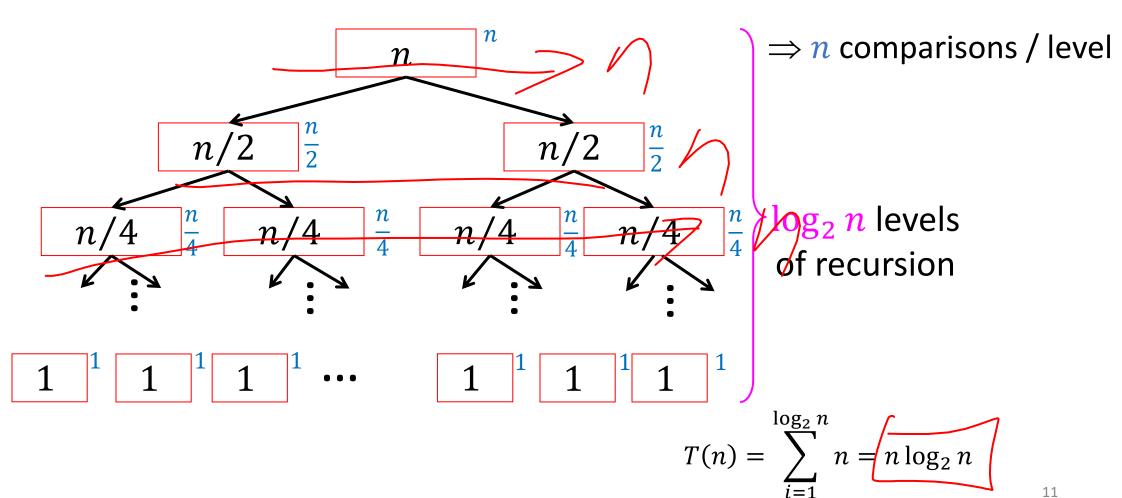
- 1. Identify time required to Divide and Combine
- 2. Identify all subproblems and their sizes
- 3. Use recurrence relation to express recursive running time
- 4. Solve and express running time asymptotically
- Divide: 0 comparisons
- Conquer: recursively sort two lists of size $\frac{n}{2}$
- Combine: n comparisons
- Recurrence:

$$T(n) = 0 + T\left(\frac{n}{2}\right) + T\left(\frac{n}{2}\right) + n$$
$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

Red box represents a problem instance

Blue value represents time spent at that level of recursion

$$T(n) = 2T(\frac{n}{2}) + n$$



Properties of Merge Sort

- Worst Case Running time:
 - $\Theta(n \log n)$
- In-Place?
 - No!
- Adaptive?
 - No!
- Stable?
 - Yes!
 - As long as in a tie you always pick l_next

Quicksort

- Like Mergesort:
 - Divide and conquer
 - $O(n \log n)$ run time (kind of...)

experted

- Unlike Mergesort:
 - Divide step is the "hard" part
 - Typically faster than Mergesort

Quicksort

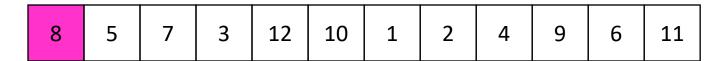
Idea: pick a pivot element, recursively sort two sublists around that element

- Divide: select pivot element p, Partition(p)
- Conquer: recursively sort left and right sublists
- Combine: Nothing!

Partition (Divide step)

Given: a list, a pivot p

Start: unordered list



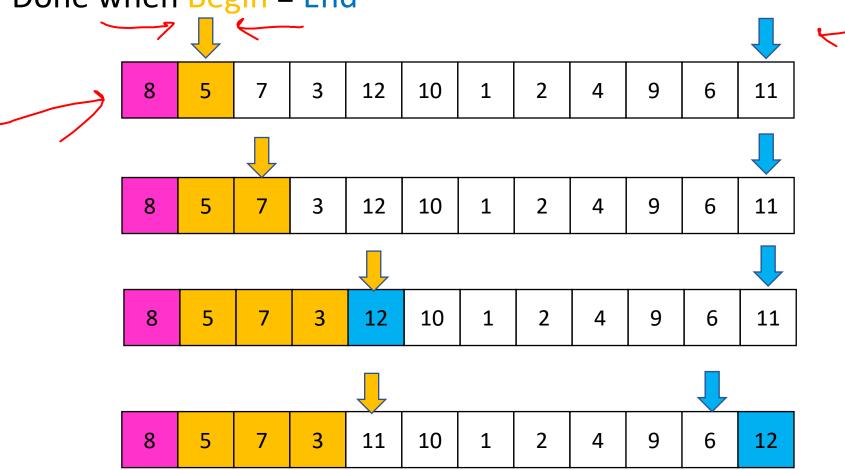
Goal: All elements < p on left, all > p on right

	5	7	3	1	2	4	6	8		12	10	9	11
							_						

If Begin value < p, move Begin right

Else swap Begin value with End value, move End Left

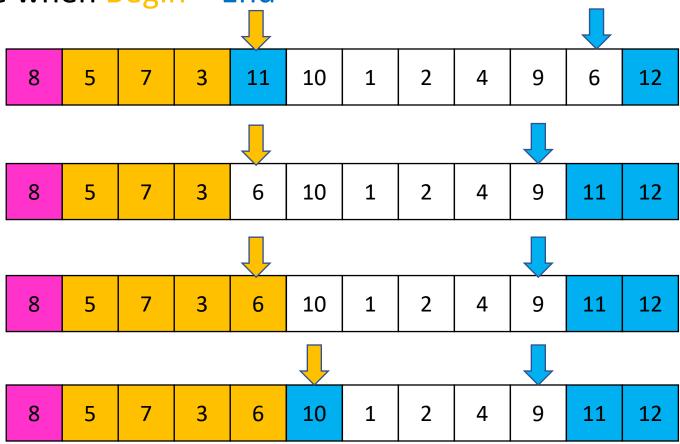
Done when Begin = End



If Begin value < p, move Begin right

Else swap Begin value with End value, move End Left

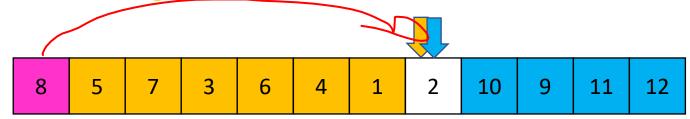
Done when Begin = End

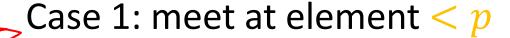


If Begin value < p, move Begin right

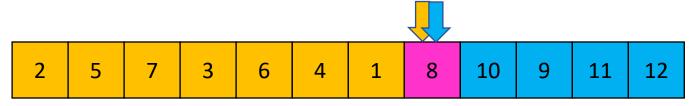
Else swap Begin value with End value, move End Left

Done when Begin = End





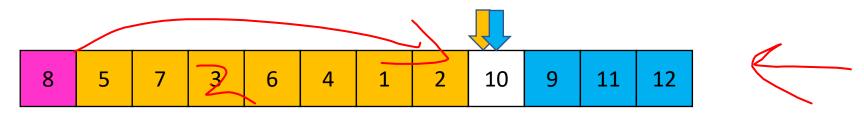
Swap p with pointer position (2 in this case)



If Begin value < p, move Begin right

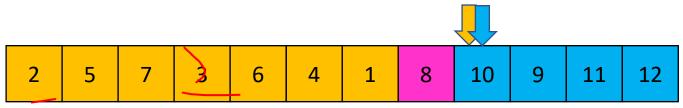
Else swap Begin value with End value, move End Left

Done when Begin = End





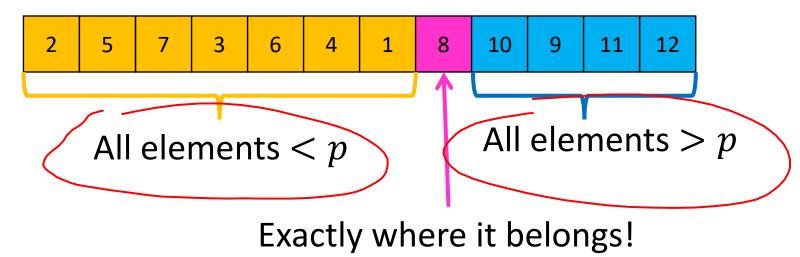
Swap p with value to the left (2 in this case)



Partition Summary

- 1. Put p at beginning of list
- 2. Put a pointer (Begin) just after p, and a pointer (End) at the end of the list
- 3. While Begin < End:
 - 1. If Begin value < p, move Begin right
 - 2. Else swap Begin value with End value, move End Left
- 4. If pointers meet at element < p: Swap p with pointer position
- 5. Else If pointers meet at element > p: Swap p with value to the left

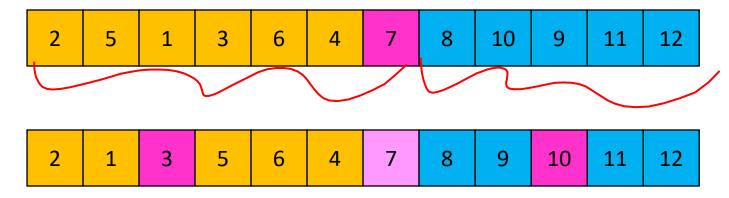
Conquer



Recursively sort Left and Right sublists

Quicksort Run Time (Best) $\sqrt{h} = 27/\frac{5}{2}$

If the pivot is always the median:



Then we divide in half each time

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$
$$T(n) = O(n\log n)$$

Quicksort Run Time (Worst) T(n) —

If the pivot is always at the extreme:

1 2 3 5 6 4 7 8 10 9 11 12

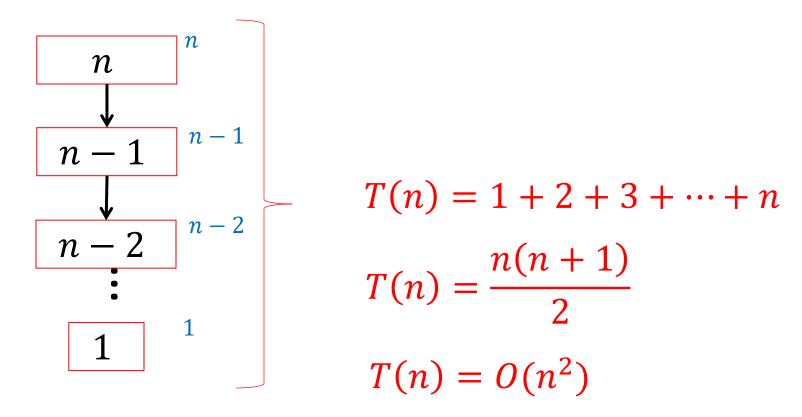
Then we shorten by 1 each time

$$T(n) = T(n-1) + n$$

$$T(n) = O(n^2)$$

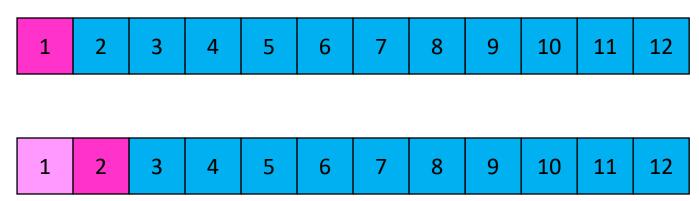
Quicksort Run Time (Worst)

$$T(n) = T(n-1) + n$$



Quicksort on a (nearly) Sorted List

First element always yields unbalanced pivot



So we shorten by 1 each time

$$T(n) = T(n-1) + n$$
$$T(n) = O(n^2)$$

Good Pivot

- What makes a good Pivot?
 - Roughly even split between left and right
 - Ideally: median
- There are ways to find the median in linear time, but it's complicated and slow and you're better off using mergesort
- In Practice:
 - Pick a random value as a pivot
 - Pick the middle of 3 random values as the pivot

Properties of Quick Sort

- Worst Case Running time:
 - $\Theta(n^2)$
 - But $\Theta(n \log n)$ average! And typically faster than mergesort!
- In-Place?
 -Debatable
- Adaptive?
 - No!
- Stable?
 - No!

Improving Running time

- Recall our definition of the sorting problem:
 - Input:
 - An array A of items
 - A comparison function for these items
- comparison function for these items Given two items x and y, we can determine whether x < y, x > y, or x = y
 - Output:
 - A permutation of A such that if $i \leq j$ then $A[i] \leq A[j]$
- Under this definition, it is impossible to write an algorithm faster than $n \log n$ asymptotically.
- Observation:
 - Sometimes there might be ways to determine the position of values without comparisons!

"Linear Time" Sorting Algorithms

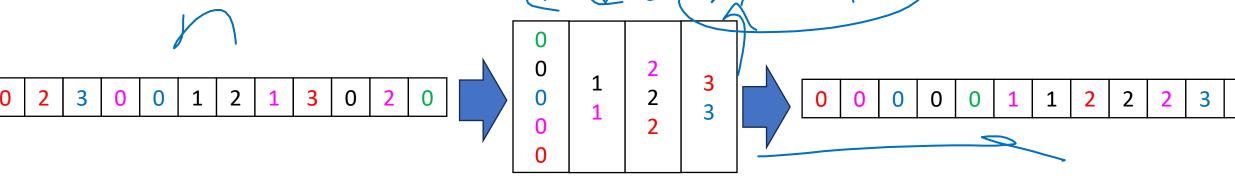
- Useable when you are able to make additional assumptions about the contents of your list (beyond the ability to compare)
 - Examples:
 - The list contains only positive integers less than k
 - The number of distinct values in the list is much smaller than the length of the list
- The running time expression will always have a term other than the list's length to account for this assumption
 - Examples:
 - Running time might be $\Theta(k \cdot n)$ where k is the range/count of values

BucketSort

• Assumes the array contains integers between 0 and k-1 (or some other small range)

• Idea:

- Use each value as an index into an array of size k
- Add the item into the "bucket" at that index (e.g. linked list)



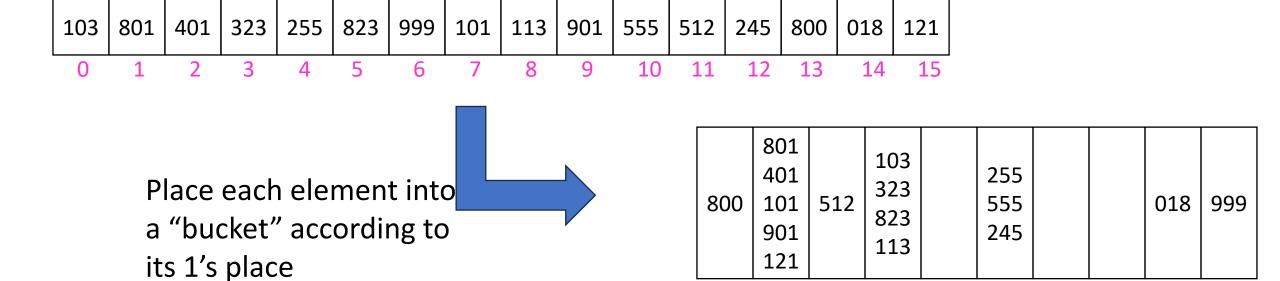
BucketSort Running Time

- Create array of k buckets
 - Either $\Theta(k)$ or $\Theta(1)$ depending on some things...
- Insert all n things into buckets
 - $\Theta(n)$
- Empty buckets into an array
 - $\Theta(n+k)$
- Overall:
 - $\Theta(n+k)$
- When is this better than mergesort?

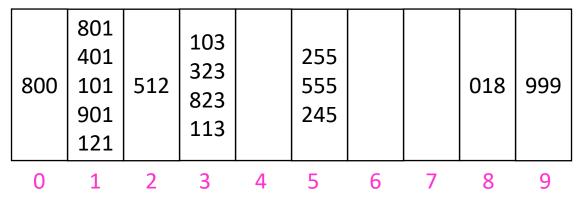
Properties of BucketSort

- In-Place?
 - No
- Adaptive?
 - No
- Stable?
 - Yes!

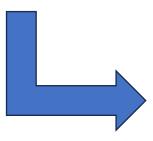
- Radix: The base of a number system
 - We'll use base 10, most implementations will use larger bases
- Idea:
 - BucketSort by each digit, one at a time, from least significant to most significant

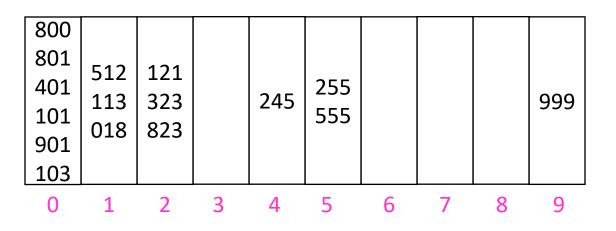


- Radix: The base of a number system
 - We'll use base 10, most implementations will use larger bases
- Idea:
 - BucketSort by each digit, one at a time, from least significant to most significant

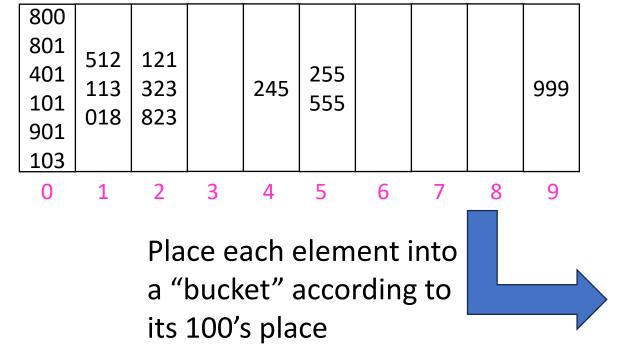


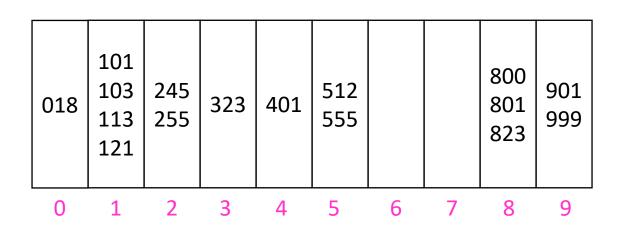
Place each element into a "bucket" according to its 10's place



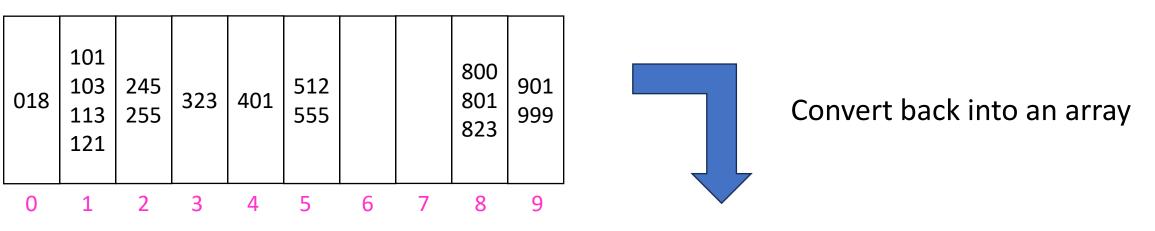


- Radix: The base of a number system
 - We'll use base 10, most implementations will use larger bases
- Idea:
 - BucketSort by each digit, one at a time, from least significant to most significant





- Radix: The base of a number system
 - We'll use base 10, most implementations will use larger bases
- Idea:
 - BucketSort by each digit, one at a time, from least significant to most significant

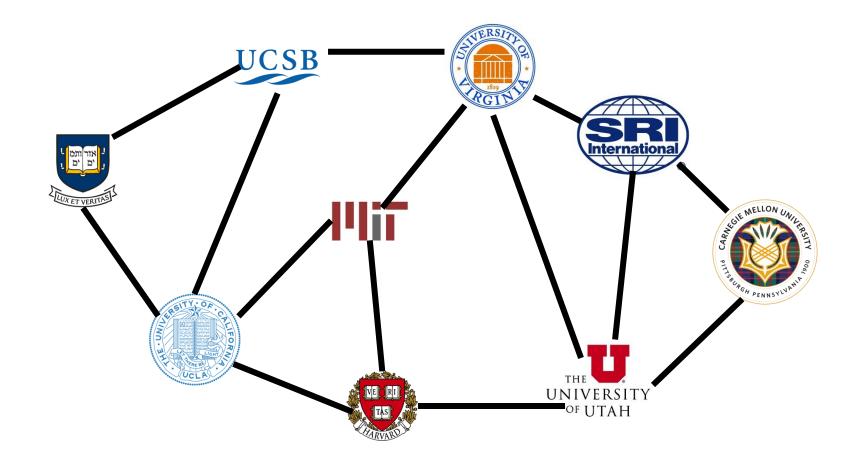


018	811	103	113	121	245	255	323	401	512	555	800	801	823	901	999	
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	

RadixSort Running Time

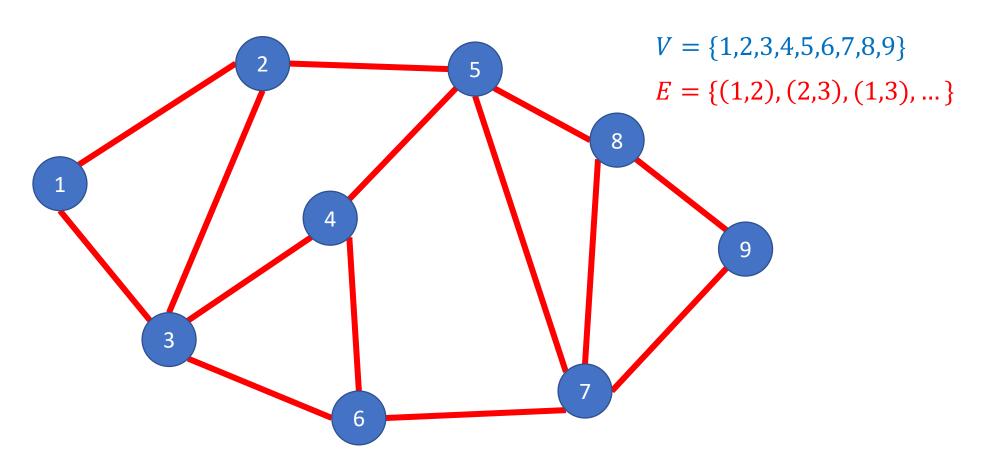
- Suppose largest value is *m*
- Choose a radix (base of representation) b
- BucketSort all n things using b buckets
 - $\Theta(n+k)$
- Repeat once per each digit
 - $\log_b m$ iterations
- Overall:
 - $\Theta(n \log_b m + b \log_b m)$
- In practice, you can select the value of b to optimize running time
- When is this better than mergesort?

ARPANET



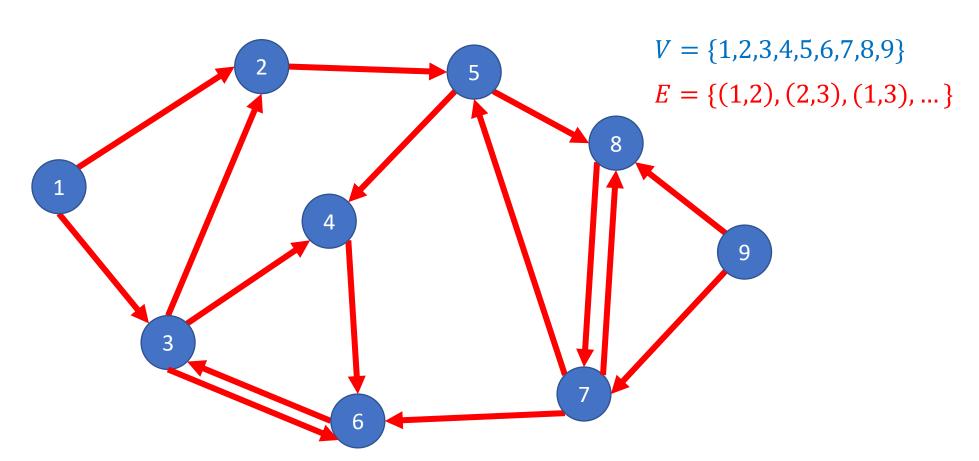
Undirected Graphs

Definition:
$$G = (V, E)$$
Edges



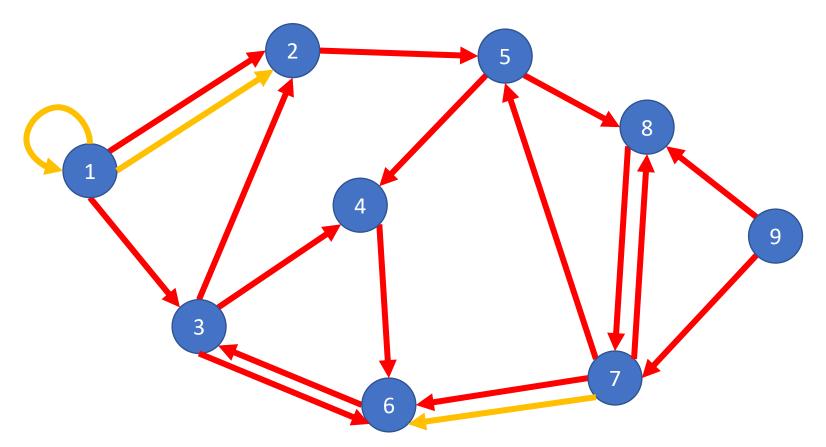
Directed Graphs

Definition:
$$G = (V, E)$$
Edges



Self-Edges and Duplicate Edges

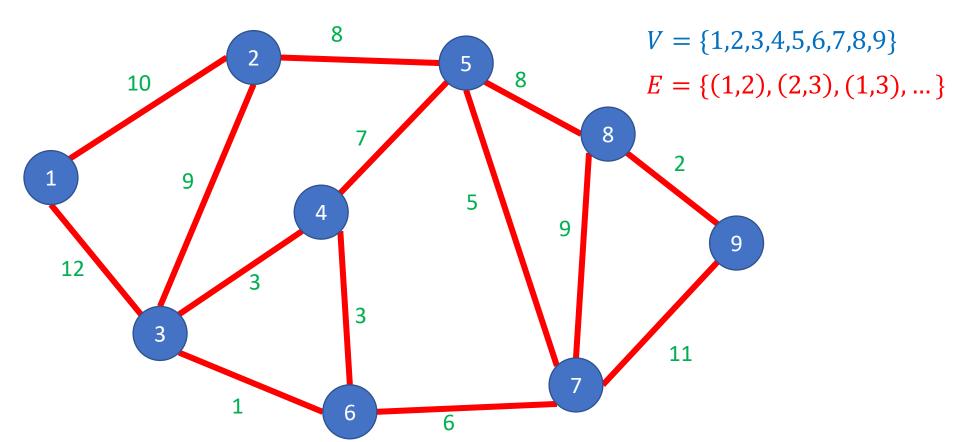
Some graphs may have duplicate edges (e.g. here we have the edge (1,2) twice). Some may also have self-edges (e.g. here there is an edge from 1 to 1). Graph with Neither self-edges nor duplicate edges are called simple graphs



Weighted Graphs

Definition: G = (V, E)Edges

w(e) = weight of edge e

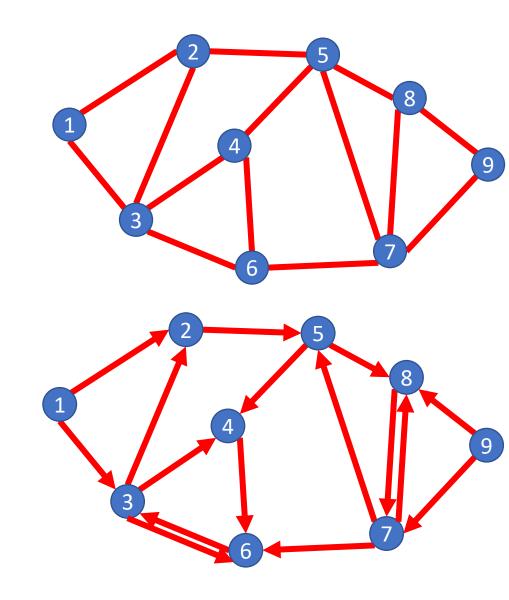


Graph Applications

- For each application below, consider:
 - What are the nodes, what are the edges?
 - Is the graph directed?
 - Is the graph simple?
 - Is the graph weighted?
- Facebook friends
- Twitter followers
- Java inheritance
- Airline Routes

Some Graph Terms

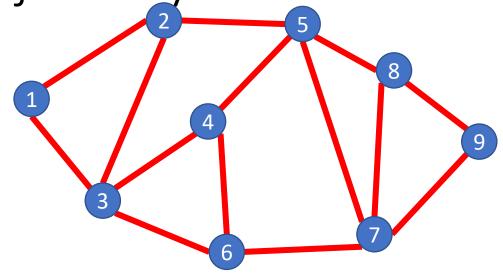
- Adjacent/Neighbors
 - Nodes are adjacent/neighbors if they share an edge
- Degree
 - Number of "neighbors" of a vertex
- Indegree
 - Number of incoming neighbors
- Outdegree
 - Number of outgoing neighbors



Graph Operations

- To represent a Graph (i.e. build a data structure) we need:
 - Add Edge
 - Remove Edge
 - Check if Edge Exists
 - Get Neighbors (incoming)
 - Get Neighbors (outgoing)

Adjacency List



Time/Space Tradeoffs

Space to represent: $\Theta(n+m)$

Add Edge: $\Theta(1)$

Remove Edge: $\Theta(1)$

Check if Edge Exists: $\Theta(n)$

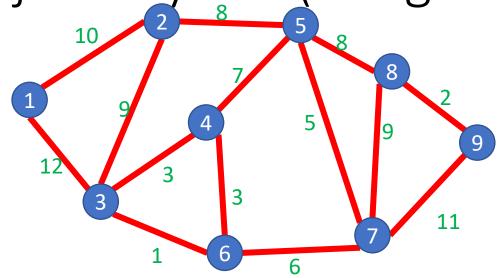
Get Neighbors (incoming): $\Theta(n+m)$

Get Neighbors (outgoing): $\Theta(\deg(v))$

V	=	n
E	=	m

1	2	3		
2	1	3	5	
3	1	2	4	6
4	3	5	6	
5	2	4	7	8
6	3	4	7	
7	5	6	8	9
8	5	7	9	
9	7	8		•

Adjacency List (Weighted)



Time/Space Tradeoffs

Space to represent: $\Theta(n+m)$

Add Edge: $\Theta(1)$

Remove Edge: $\Theta(1)$

Check if Edge Exists: $\Theta(n)$

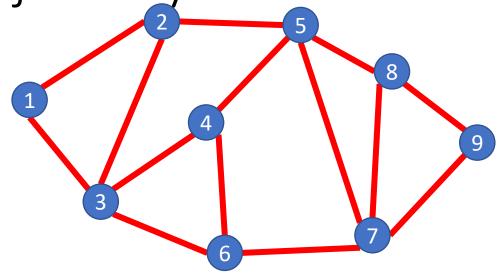
Get Neighbors (incoming): $\Theta(?)$

Get Neighbors (outgoing): $\Theta(?)$

V	=	n
E	=	m

1	2	3		
2	1	3	5	
3	1	2	4	6
4	3	5	6	
5	2	4	7	8
6	3	4	7	
7	5	6	8	9
8	5	7	9	
9	7	8		•

Adjacency Matrix



Time/Space Tradeoffs

Space to represent: $\Theta(?)$

Add Edge: $\Theta(?)$

Remove Edge: $\Theta(?)$

Check if Edge Exists: $\Theta(?)$

Get Neighbors (incoming): $\Theta(?)$

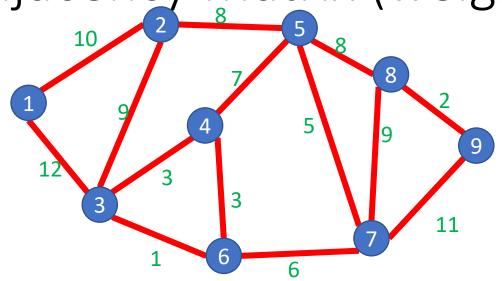
Get Neighbors (outgoing): $\Theta(?)$

$$|V| = n$$

$$|E|=m$$

	А	В	С	D	Е	F	G	Н	ı
А		1	1						
В	1		1		1				
С	1	1		1		1			
D			1		1	1			
Е		1		1			1	1	
F			1	1			1		
G					1	1		1	1
Н					1		1		1
1							1	1	

Adjacency Matrix (weighted)



Time/Space Tradeoffs

Space to represent: $\Theta(n^2)$

Add Edge: $\Theta(1)$

Remove Edge: $\Theta(1)$

Check if Edge Exists: $\Theta(1)$

Get Neighbors (incoming): $\Theta(n)$

Get Neighbors (outgoing): $\Theta(n)$

$$|V| = n$$

	А	В	С	D	Е	F	G	Н	1
А		1	1						
В	1		1		1				
С	1	1		1		1			
D			1		1	1			
Е		1		1			1	1	
F			1	1			1		
G					1	1		1	1
Н					1		1		1
ı							1	1	

Aside

- Almost always, adjacency lists are the better choice
- Most graphs are missing most of their edges, so the adjacency list is much more space efficient and the slower operations aren't that bad