CSE 332 Winter 2024
Lecture 15: Sorting

Nathan Brunelle
http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Divide And Conquer Sorting

—

* Divide and Conquer:
* Recursive algorithm,design technique

* Solve a large problem by breaking it up into smaller versions of the same
problem

e Base Case:
—\

* |f the problem is “small” then solve directly and return

* Divide:
“ '« Break the problem into subproblem(s), each smaller instances

* Conquer:

* Solve subproblem(s) recursively

* Combine:
~+ Use solutions to subproblems to solve original problem

Divide and Conquer Template Pseudocode

def my_DandC(problem){
// Base Case

if (problem.size() <= small_value){
return solve(problem); // directly solve (e.g., brute force)
}
// Divide
List subproblems = divide(problem);

// Conquer

solutions = new List();

for (sub : subproblems){
subsolution = my_DandC(sub);
solutions.add(subsolution);

}

// Combine

return combine(solutions);

Merge Sort

* Base Case:
* If the list is of length 1 or O, it’s already sorted, so just return it

5

5[8]2][9]4]1]e Pivide:

 Split the list into two “sublists” of (roughly) equal length

215]8 11419 oConquer:

/—_N . o
» Sort both lists recursively C

Combine:,

°%sorted sublists into one sorted list

Merge Sort In Action!

Sort between indices low and high

/)

After Recursion:

2 4 1 3 7
low high
Base Case: if low == high then that range is already sorted!
iy : low+high low+high
Divide and Conquer: Otherwise call mergesort on ranges (low, OW+—l‘g) and (0W+—l‘g
I
5 9 4 3 7
low low + high I low + high high
— I ———+1
1 2
2 9 1 4 7
low high

+1,high)

Merge (the combine part) v

— ol |)y

3 4 7
% ,)\') =
& Tow__"| low + &*M+M/mrﬁt

\V 'y 2

7 ‘Wﬁ/\

Create a new array to merge into, and 3 pointers/indices:

* L _next: the smallest “unmerged” thing on the left _/; 2
* R _next: the smallest “unmerged” thing on the right m

* M _next: where the next smallest thing goes in the merged array

One-by-one: put the smallest of L _next and R_next into M_next,
then advance both M_next and whichever of L/R was used.

Merge Sort Pseudocode] y:ﬂz 7\/?%%

void mergesort(myArray){

ms_helper(myArray, 0, myArray.length());
}
void mshelper(myArray, low, high){
if (low == high){return;} // Base Case
mid = (low+high)/2; — =/
ms_helper(low, mid); / (/j
ms_helper(mid+1, high); 7(e

merge(myArray, low, mid, high);

=)
} - A\

Merge Pseudocode

void merge(myArray, low, mid, high){
merged = new int[high-low+1]; // or whatever type is in myArray

| _next = low;
r_next = high;
m_next =0;

while @_next <=mid && r_next <= high)
if (myArray[l_next] <= myArray[r_next]){
M} = myArray[l_next++];
}

else{

merged[m_next++] = myArray[r_next++];

}

while (I_next <= mid){ merged[m_next++] = myArray[l_next++]; }
while (r_next <= high){ merged[m_next++] = myArray[r_next++]; }
for(i=0; i<=merged.length; i++){ myArray[i+low] = merged]i];}

Analyzing Merge Sort

ldentify time required to Divide and Combine

Identify all subproblems and their sizes

Use recurrence relation to express recursive running time
Solve and express running time asymptotically

B N e

* Divide: 0 comparisons
. . . n
* Conquer: recursively sort two lists of size >

* Combine: n comparisons
* Recurrence:

T(n)=0+T(§)+T(§)+n
T(n) =2T (%) +n

Red box represents a
problem instance

Blue value represents
time spent at that level of
recursion

T(n) = zr(g) +

ﬁ.:
5%

"\ = n comparisons / level

N

p(?gz n levels
f recursion

log, n
T(n) = z n={nlog2n (
=1 11

Properties of Merge Sort

—

* Worst Case Running time:
* O(nlogn)

* In-Place?

ﬁ * No!

* Adaptive? /L/
* No! d

° Stable?

* Yes! /
* Aslong asin a tie you always pick | _next
L/\/

wsort
6'/(/4 Q ¢ %Q

* Like Mergesort:

* Divide and conquer L
* O(nlogn) run time (kind of...)

. Ugﬁmgesort:

* Divide step is the “hard” part
* Typically faster than Mergesort

13

LQumksort\]

ldea: pick a}/ pivo} element, recursively sort two sublists around that
element

* Divide: select)p/inelement p, Partition(p) |
* Conquer: recursively sort left and right sublists

e

* Combine: Nothing!

14

Partition (Divide step)

¥

Given: a list, a pivot p &~

Start: unordered list
. 5 7 3 12 | 10 1 2 6 11
Goal: All elements on left,

/LS 7 3

1

2

6

p on right

15

Partition, Procedure

If Secin value < p, move

Else swap
Done when

right

value with End value, move End Left

= End

7

12

10

J <
11

|

{4

U

7 12 | 10 6 | 11
7 6 | 11

10

‘H

16

Partition, Procedure

If value < p, move right
Else swap value with End value, move End Left
Done when = End

7 3&10 1 2 4

!

7 3 6 [10 | 1 2 4

U

o [gm

115

10 | 1 2 4

7 3 6%1 2 4

Partition, Procedure

If value < p, move right
Else swap value with End value, move End Left
Done when = End

BT -1

Case 1: meet at element

—

Swap p with (2 in this case)

el

2 5 7 3 6 4 1

18

Partition, Procedure) 77)

If value < p, move right
Else swap value with End value, move End Left
Done when = End

|

ol

J
B EEE <

Case 2: meet at element > p

Swap p with (2 in this case)

19

Partition Summary

1. Put p at beginning of list

2. Put a pointer () just after p, and a pointer (End) at the end of
the list

3. While < End:

1. If value < p, move right
2. Else swap value with End value, move End Left

4. If pointers meet at element : Swap p with
5. Else If pointers meet at element > p: Swap p with

Runtime? 0(n)

0

Conquer

2

5

7

3

6

4

1

AI@

All elements > p

Exactly where it belongs!

Recursively sort

and Right sublists

21

Quicksort Run Time (Best) L‘) ’ZT/ k@
G (nle;

If the pivot is always the median:

2 5 1 3 6 4

T B [[+ |-

Then we divide in half each time

T(n) = 2T(§)+n
T(n) = O(nlogn)

Quicksort Run Time (Worst) T[WLT(V“/

o —
If the pivot is always at the extreme: /7

w_@(y#/

1
4P.
Then‘we shorten by 1 each time

Tm)=Tn—-1)+n

T(n) = 0(n?)

Quicksort Run Time (Worst)
Tm)=Tn—-1)+n

n

l n—1
n—1

| . T(n)=1+4+24+3+-+n
n—2 |"°

5 T'(n) = n(n2+ 1)

1 1

- T(n) = 0(n%)

Quicksort on a (nearly) Sorted List

First element always yields unbalanced pivot

s fefslef 7o o frfu]n

So we shorten by 1 each time

Tm)=Tn—-1)+n

T(n) = 0(n?)

25

& Good Pivot

 What makes M

* Roughly even split between left and right\
* ldeally: median

* There are ways to find the median in linear time, but it’s complicated
and slow and you’re better off using mergesort

* In Practice:
N Praci

* Pick a random value as a pivot
* Pick the middle of 3 random values as the pivot D /\7 /
/7 — /’7

Properties of Quick Sort

* Worst Case Running time:
o @(nz) ‘K (

* But,®(nlogn) average! And typically faster than mergesort!

* In-Place?
Sl

eDebatable é/
e Adaptive?

 No!

e Stable?
~ « No!

Improving Running time

* Recall our definition of the sorting problem:
* Input:
* An array A of items (

* A comparison function for these items / ‘XX

* Given two items x and y, we can determine whetherx <y, x > y,orx =y
* Output:
A permutation of A such thatif i < j then A[i] < A[J] ('

e Under this definition, it is impossible to write an algorithm faster than
n log n asymptotically.

e Observation:

* Sometimes there might be ways to determine the position of values without
comparisons!

“Linear Time” Sorting Algorithms

* Useable when you are able to make additional assumptions about the
contents of your list (beyond the ability to compare)
* Examples:

* The list contains only positive integers less than
* The number of distinct values in the list is much smaller than the length of the list

* The running time expression will always have a term other than the
list’s length to account for this assumption

e Examples:
* Running time might be @(k - n) where k is the range/count of values

BucketSort

/

* Assumes the array contains integers between 0 and k — 1 (or some

—~—~——

other small range)

e |dea:

e

e Use each value as an index into an array of size k
* Add the item into the “bucket” at that index (e.g. linked list)

* Get sorted array by “appending” all the buc

A

310]0(1

2

"

o

N N

O |0 O o o o

+/T

o(ojo(oloj1j1f2|2
s

BucketSort Running Time

* Create array of k buckets
* Either ©(k) or ®(1) depending on some things...

* Insert all n things into buckets
* 0(n)

* Empty buckets into an array
.« O(n + k)

e Overall:
e O(n+ k)

 When is this better than mergesort?

Properties of BucketSort

* In-Place?
* No

e Adaptive?
* No

e Stable?
* Yes!

e |dea:

RadixSort

e Radix: The base of a number system
 We'll use base 10, most implementations will use larger bases

* BucketSort by each digit, one at a time, from least significant to most significant

103 | 801 | 401 | 323 | 255 | 823|999 | 101 | 113 | 901 | 555 | 512 | 245 | 800 | 018 | 121
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
801 103
Place each element into o1 323 22>
_ 800 | 101 | 512 | .°7 555 018 | 999
a “bucket” according to 901 113 245
its 1’s place 121
5 8 9

RadixSort

e Radix: The base of a number system

 We'll use base 10, most implementations will use larger bases

* BucketSort by each digit, one at a time, from least significant to most significant

e |dea:
801
401 ;gg 255
800|101 512 555 018 | 999
823
901 113 245
121
0 1 2 3 5 8 9

Place each element into
a “bucket” according to
its 10’s place

800
801
401 >121121 255
113 | 323 245 999
101 018 | 823 29>
901
103
0 1 2 4 5 9

e Radix: The base of a number system

RadixSort

 We'll use base 10, most implementations will use larger bases

* BucketSort by each digit, one at a time, from least significant to most significant

e |dea:
800
801
401 >1271121 255
113 | 323 245 999
101 018 | 823 =5
901
103
0 1 2 3 4 5 6 7 9

Place each element into
a “bucket” according to
its 100’s place

101

800
103 | 245 512 901
018 113 | 255 3231401 555 22; 999
121
0 1 2 3 4 5 8 9

RadixSort

e Radix: The base of a number system
 We'll use base 10, most implementations will use larger bases

* |dea:
* BucketSort by each digit, one at a time, from least significant to most significant
101
800
103 | 245 512 901
0181 113 | 255 | 323 | 491 | 555 ggg 999 Convert back into an array
121

018 | 811|103 | 113 {121 | 245 | 255|323 (401|512 |555|800 (801 (823|901 |999

RadixSort Running Time

e Suppose largest value ism
* Choose a radix (base of representation) b

* BucketSort all n things using b buckets
.« O(n + k)
* Repeat once per each digit
* log, m iterations
* Overall:
* O(nlog, m+ blog, m)
* |n practice, you can select the value of b to optimize running time

 When is this better than mergesort?

ARPANET

international

THEu

UNIVERSITY
OF UTAH

38

U N d I reCted G [d p hS Vertices/Nodes
Definition: G = (V, E)

Edges

V ={1,2,3,4,5,6,7,8,9)
E ={(12),(23),(13),..}

39

D| re Cted G a p hS Vertices/Nodes
Definition: G = (V, E)

Edges

V ={1,2,3,4,5,6,7,8,9)
E ={(12),(23),(13),..}

40

Selt-Edges and Duplicate Edges

Some graphs may have duplicate edges (e.g. here we have the edge (1,2) twice).
Some may also have self-edges (e.g. here there is an edge from 1 to 1).
Graph with Neither self-edges nor duplicate edges are called simple graphs

41

Welghted Gra P hS Vertices/Nodes
Definition: G = (V, E)

Edges

w(e) = weight of edge e

8 vV =1{1,2,3,4,5,6,7,8,9}
E={(1,2),0273),(13),..}

42

Graph Applications

* For each application below, consider:
 What are the nodes, what are the edges?
* |s the graph directed?
* |s the graph simple?
* |s the graph weighted?

* Facebook friends
* Twitter followers
* Java inheritance
* Airline Routes

Some Graph Terms

» Adjacent/Neighbors

* Nodes are adjacent/neighbors if they share an
edge

* Degree
* Number of “neighbors” of a vertex

* Indegree
 Number of incoming neighbors

e OQutdegree
* Number of outgoing neighbors

Graph Operations

* To represent a Graph (i.e. build a data structure) we need:
* Add Edge
* Remove Edge
* Check if Edge Exists
e Get Neighbors (incoming)
* Get Neighbors (outgoing)

AdJacenc List

Time/Space Tradeoffs

Space to represent: O(n + m)
Add Edge: ©(1)

Remove Edge: (1) V| =n
Check if Edge Exists: O(n) |E| = m
Get Neighbors (incoming): ©®(n + m)
Get Neighbors (outgoing): @(deg(v))

46

AdJacenc List (We|ghted)

Time/Space Tradeoffs

Space to represent: O(n + m)
Add Edge: ©(1)

Remove Edge: ©(1) V| =n
Check if Edge Exists: O(n) |E| = m
Get Neighbors (incoming): ©(?)
Get Neighbors (outgoing): ©(?7)

47

Adjacency Matrix

Time/Space Tradeoffs
Space to represent: O(?)
Add Edge: ©(?)

Remove Edge: ©(?) V| =n
Check if Edge Exists: O(?) |E| = m
Get Neighbors (incoming): ©(?)
Get Neighbors (outgoing): ©(?)

48

AdJacenc I\/Iatrlx (Welghted)

A
B
C
D
E

Time/Space Tradeoffs .

Space to represent: ©(n?) .

Add Edge: ©(1)

Remove Edge: (1) V| =n i

Check if Edge Exists: ©(1) E| =m '

Get Neighbors (incoming): ©(n)
Get Neighbors (outgoing): ©(n)

49

Aside

* Almost always, adjacency lists are the better choice

* Most graphs are missing most of their edges, so the adjacency list is
much more space efficient and the slower operations aren’t that bad

	Slide 1: CSE 332 Winter 2024 Lecture 15: Sorting
	Slide 2: Divide And Conquer Sorting
	Slide 3: Divide and Conquer
	Slide 4: Divide and Conquer Template Pseudocode
	Slide 5: Merge Sort
	Slide 6: Merge Sort In Action!
	Slide 7: Merge (the combine part)
	Slide 8: Merge Sort Pseudocode
	Slide 9: Merge Pseudocode
	Slide 10: Analyzing Merge Sort
	Slide 11
	Slide 12: Properties of Merge Sort
	Slide 13: Quicksort
	Slide 14: Quicksort
	Slide 15: Partition (Divide step)
	Slide 16: Partition, Procedure
	Slide 17
	Slide 18: Partition, Procedure
	Slide 19: Partition, Procedure
	Slide 20: Partition Summary
	Slide 21: Conquer
	Slide 22: Quicksort Run Time (Best)
	Slide 23: Quicksort Run Time (Worst)
	Slide 24: Quicksort Run Time (Worst)
	Slide 25: Quicksort on a (nearly) Sorted List
	Slide 26: Good Pivot
	Slide 27: Properties of Quick Sort
	Slide 28: Improving Running time
	Slide 29: “Linear Time” Sorting Algorithms
	Slide 30: BucketSort
	Slide 31: BucketSort Running Time
	Slide 32: Properties of BucketSort
	Slide 33: RadixSort
	Slide 34: RadixSort
	Slide 35: RadixSort
	Slide 36: RadixSort
	Slide 37: RadixSort Running Time
	Slide 38: ARPANET
	Slide 39: Undirected Graphs
	Slide 40: Directed Graphs
	Slide 41: Self-Edges and Duplicate Edges
	Slide 42: Weighted Graphs
	Slide 43: Graph Applications
	Slide 44: Some Graph Terms
	Slide 45: Graph Operations
	Slide 46: Adjacency List
	Slide 47: Adjacency List (Weighted)
	Slide 48: Adjacency Matrix
	Slide 49: Adjacency Matrix (weighted)
	Slide 50: Aside

