CSE 332 Autumn 2023
Lecture 12: Hashing

Nathan Brunelle
http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Find

e Start at the root node
* Binary search internal nodes to identify correct subtree
* Repeat until you reach a leaf node

* Binary search the leaf to get the value ‘\38 I
1 3 38| | 55
2 4 6 10 14| | 24 27 40 90

7 17 30 50

Insertion Summary

* Binary search to find which leaf should contain the new item
* If there’s room, add it to the leaf array (maintaining sorted order)
* If there’s not room, split

L+1] . :
* Make a new leaf node, move the larger {%‘ items to it
e If there’s room in the parent internal node, add new leaf to it (with new key
bound value)
* |f there’s not room in the parent internal node, split that!

: o M+1
* Make a new internal node and have it point to the larger {T+‘

 If there’s room in the parent internal node, add this internal node to it
 If there’s not room, repeat this process until there is!

Insertion TLDR

* Find where the item goes by repeated binary search
* If there’s room, just add it
* If there’s not room, split things until there is

Running Time of Find

e Maximum number of leaves:

2n
L
* 0 (%) Overall: © (logz M - logy % + log, L)
* Maximum height of the tree: Usually simplified to:
. ZlogMzT" O(log, M - logy n)
0108)
* Find:

* One binary search per level of the tree
* O(log, M) persearch

* One binary search in the leaf
* O(log, L)

Running Time of Insert

* Find:

* O(log, M - log,, n)
 Add item to leaf:

* O(L)
 Split a leaf

* O(L)

* Split one internal node:
* O(M)

Overall: (L + M - logy n)
Usually simplified to:
O(log, M - log,, n)

Delete

e Recall: all nodes must be at least half full (except root at startup)

7
FED B

10 14 | | 24 | | 27 40| | 90

17 30)4

delete 50

Delete

e Recall: all nodes must be at least half full (except root at startup)

7
FED B

10 14 | | 24 | | 27 40| | 90

delete 24

17 30

Delete

e Recall: all nodes must be at least half full (except root at startup)

7
! RO

10 14 | | 20| | 27 40| | 90

delete 24

o5

30

Delete

e Recall: all nodes must be at least half full (except root at startup)

7
! RO

10 14 | | 20| | 27 40| | 90

delete 5

o5

30

Delete

e Recall: all nodes must be at least half full (except root at startup)

7
! RO

10 14 | | 20| | 27 40| | 90

delete 5

o5

6 30

Delete

e Recall: all nodes must be at least half full (except root at startup)

7
! RO

10 14 | | 20| | 27 40| | 90

delete 1

o5

30

Delete

e Recall: all nodes must be at least half full (except root at startup)

delete 1
13)
!9! ! ! ! 55 I I
2 3 7 9
3 4 8 10 14 20 27 40 90

4 30 50

Delete

e Recall: all nodes must be at least half full (except root at startup)

13 B 38 I

3 9 ! 17 F 25 , I , 55 ! I I
13| (17| | 25 38| [55

3 8 10 14| (20| | 27 40| | 90

delete 1

4 30

Delete Summary

* Find the item

* Remove the item from the leaf
* |f that causes the leaf to be under-full, adopt from a neighbor
* |f that would cause the neighbor to be under-full, merge them

* Update the parent
 If that causes the parent to be under-full, adopt from a neighbor
 If that causes the neighbor to be under-full, merge
e Update the parent

Delete TLDR

 Find and remove from leaf

* Keep doing this until everything is “full enough”:
* |f the node is now too small, adopt from a neighbor
* |f the neighbor is too small then merge

Next topic: Hash Tables

Data Structure Time to find Time to delete

Unsorted Array O(n) O(n) O(n)
Unsorted Linked List O(n) O(n) O(n)
Sorted Array O(n) O(logn) O(n)
Sorted Linked List O(n) O(n) O(n)
Binary Search Tree O(n) O(n) O(n)
AVL Tree O(logn) O(logn) O(logn)
Hash Table (Worst case) O(n) O(n) O(n)

Hash Table (Average) 0(1) 0(1) 0(1)

Two Different ideas of “Average”

* Expected Time

* The expected number of operations a randomly-chosen input uses
* Assumed randomness from somewhere

* Most simply: from the input

* Preferably: from the algorithm/data structure itself

* f(n) = sum of the running times for each input of size n divided by the
number of inputs of size n

e Amortized Time
* The long-term average per-execution cost (in the worst case)

 Rather than look at the worst case of one execution, look at the total worst
case of a sequential chain of many executions
 Why? The worst case may be guaranteed to be rare

* f(n) = the sum of the running times from a sequence of n sequential calls to
the function divided by n

Amortized Example

* ArraylList Insert:
* Worst case: O(n)

Amortized Example

* ArraylList Insert:

First 8 inserts: 1 operation each
9t insert: 9 operations

Next 7 inserts: 1 operation each
17t insert: 17 operations

Next 15 inserts: 1 operation each

Do x operations with cost 1
Do 1 operation with cost x
Do x operations with cost 1
Do 1 operation with cost 2x
Do 2x operations with cost 1
Do 1 operation with cost 4x
Do 4x operations with cost 1
Do 1 operation with cost 8x

Amortized: each operation cost 2 operations
0(1)

Hash Tables

* Motivation:
* Why not just have a gigantic array?

Problem?

Hash Tables

* |dea:
* Have a small array to store information

* Use a hash function to convert the key into an index
* Hash function should “scatter” the keys, behave as if it randomly assigned keys to indices
 Store key at the index given by the hash function

* Do something if two keys map to the same place (should be very rare)
 Collision resolution

Index Insert / find /
h(k) between 0 delete & value
and size-1

Key Object

Example

* Key: Phone Number

* Value: People

* Table size: 10

* h(phone) = number as an integer % 10
* h(8675309) =9

What Influences Running time?

Properties of a “Good” Hash

* Definition: A hash function maps objects to integers

* Should be very efficient
e Calculating the hash should be negligible

* Should “randomly” scatter objects
* Even similar objects should be able to be far away

* Should use the entire table
* There should not be any indices in the table that nothing can hash to
* Picking a table size that is prime helps with this

* Should use things needed to “identify” the object
* Use only fields you would check for a .equals method be included in calculating the hash
* More fields typically leads to fewer collisions, but less efficient calculation

A Bad Hash (and phone number trivia)

* h(phone) = the first digit of the phone number
* No US phone numbers start with 1 or 0
* If we’re sampling from this class, 2 is by far the most likely

Compare These Hash Functions (for strings)

* Let s = 57S1Sy ... S;,,_1 be a string of length m
* Let a(s;) be the ascii encoding of the character s;

* hi(s) = a(syp)
* hy(s) = (T als))
* hs(s) = (X% alsy) - 37Y)

Collision Resolution

* A Collision occurs when we want to insert something into an already-
occupied position in the hash table

* 2 main strategies:

e Separate Chaining
* Use a secondary data structure to contain the items
* E.g. each indexin the hash table is itself a linked list
* Open Addressing

* Use a different spot in the table instead
* Linear Probing

* Quadratic Probing
* Double Hashing

Separate Chaining Insert

 Toinsert k, v:
* Compute the index usingi = h(k) % size
* Add the key-value pair to the data structure at table|i]

k,v
k,v k,v
o 1 2 3 4 5

Separate Chaining Find

* To find k:
* Compute the index usingi = h(k) % size
* Call find with the key on the data structure at tablel|i]

k,v
k,v k,v
o 1 2 3 4 5

Separate Chaining Delete

* To delete k:
* Compute the index usingi = h(k) % size
* Call delete with the key on the data structure at table|i]

k,v
k,v k,v
o 1 2 3 4 5

Formal Running Time Analysis

* The load factor of a hash table represents the average number of
items per “bucket”

[A — L
sSize

* Assume we have a has table that uses a linked-list for separate
chaining
* What is the expected number of comparisons needed in an unsuccessful find?

 What is the expected number of comparisons needed in a successful find?

* How can we make the expected running time 0(1)?

Load Factor?

k,v
k,v k,v
0 2 5

Load Factor?

kv k,v

k,v k,v

k,v k,v k,v

0 2 5 9

Load Factor?

k;v k,v k’v

k,v k;v k,v k;v

k,v k,v k,v k,v k,v| |k,v| |k,v
0 2 4 5 /7 8 9

Collision Resolution: Linear Probing

* When there’s a collision, use the next open space in the table

Linear Probing: Insert Procedure

e Toinsert k, v
 Calculatei = h(k) % size
If table|i] is occupied then try (i + 1)% size
If that is occupied try (i + 2)% size
If that is occupied try (i + 3)% size

Linear Probing: Find

* Let’s do this together!

Linear Probing: Find

* To find key k
 Calculatei = h(k) % size
* |f tablel|i] is occupied and does not contain k then look at (i + 1) % size
* |f that is occupied and does not contain k then look at (i + 2) % size
* |f that is occupied and does not contain k then look at (i + 3) % size
* Repeat until you either find k or else you reach an empty cell in the table

Linear Probing: Delete

* Let’s do this together!

Linear Probing: Delete

* Let’s do this together!

	Slide 1: CSE 332 Autumn 2023 Lecture 12: Hashing
	Slide 2: Find
	Slide 3: Insertion Summary
	Slide 4: Insertion TLDR
	Slide 5: Running Time of Find
	Slide 6: Running Time of Insert
	Slide 7: Delete
	Slide 8: Delete
	Slide 9: Delete
	Slide 10: Delete
	Slide 11: Delete
	Slide 12: Delete
	Slide 13: Delete
	Slide 14: Delete
	Slide 15: Delete Summary
	Slide 16: Delete TLDR
	Slide 17: Next topic: Hash Tables
	Slide 18: Two Different ideas of “Average”
	Slide 19: Amortized Example
	Slide 20: Amortized Example
	Slide 21: Hash Tables
	Slide 22: Problem?
	Slide 23: Hash Tables
	Slide 24: Example
	Slide 25: What Influences Running time?
	Slide 26: Properties of a “Good” Hash
	Slide 27: A Bad Hash (and phone number trivia)
	Slide 28: Compare These Hash Functions (for strings)
	Slide 29: Collision Resolution
	Slide 30: Separate Chaining Insert
	Slide 31: Separate Chaining Find
	Slide 32: Separate Chaining Delete
	Slide 33: Formal Running Time Analysis
	Slide 34: Load Factor?
	Slide 35: Load Factor?
	Slide 36: Load Factor?
	Slide 37: Collision Resolution: Linear Probing
	Slide 38: Linear Probing: Insert Procedure
	Slide 39: Linear Probing: Find
	Slide 40: Linear Probing: Find
	Slide 41: Linear Probing: Delete
	Slide 42: Linear Probing: Delete

