CSE 332 Winter 2024 Lecture 10: B Trees and Hashing

Nathan Brunelle

http://www.cs.uw.edu/332

B Trees Motivation

- Memory Locality
 - Observation: in practice, when you read from memory you're likely to soon thereafter read from nearby memory
 - When memory is "fetched", it's collected in blocks at a time
 - Works well for arrays (they're contiguous is memory)
 - May not be helpful for linked lists, BSTs, etc. (pointers could go wherever)
- Solution: Have a BST-like data structure which can take advantage of locality

First Idea

- BST nodes have a lot of information inside them
- We don't need that information for "intermediate" nodes

• Solution: Delay loading anything except keys as long as possible

Second Idea

- Nodes may not be close to each other in memory
- In the worst case, each step in a traversal could go deep in memory
- Solution: Increase branching factor of tree, load blocks of keys at a time
 - M-ary tree: each node has at most M children
 - Choose M to snugly fit in a block

- Two types of nodes:
 - Internal Nodes
 - Sorted array of M-1 keys
 - Has M children
 - No other data!
 - Leaf Nodes
 - Sorted array of L key-value pairs
- Subtree between values a and b must contain only keys that are $\geq a$ and < b
 - If a is missing use $-\infty$
 - If b is missing use ∞

Find

24

- Start at the root node
- Binary search internal nodes to identify correct subtree
- Repeat until you reach a leaf node
- Binary search the leaf to get the value

Aside: Implementation

• What an internal node class might look like:

- int M
- (int[] keys
- Node[] children
- jnt num_children

- int L
- **E[]** data
- int num_items

B Tree Structure Requirements

- Root:
 - If the tree has $\leq L$ tems then root is a leaf node
 - Otherwise it is an internal node
- Internal Nodes:
 - Must have at least $\left[\frac{M}{2}\right]$ children (at least half full)
 - Unless it's the root and there aren't enough items to have that many children
- Leaf Nodes;
 - Must have at least Must have at least $\left|\frac{L}{2}\right|$ items (at least half full)
 - Unless it's the root and there aren't at least $\frac{L}{2}$ items
 - All leaves are at the same depth

Insertion Summary

- Binary search to find which leaf should contain the new item
- If there's room, add it to the leaf array (maintaining sorted order)
- If there's not room, **split** Make a new leaf node, move the larger $\left\lfloor \frac{L+1}{2} \right\rfloor$ items to it
 - If there's room in the parent internal node, add new leaf to it (with new key bound value)
 - If there's not room in the parent internal node, split that!
 - Make a new internal node and have it point to the larger $\left| \frac{M+1}{2} \right|$
 - If there's room in the parent internal node, add this internal node to it
 - If there's not room, repeat this process until there is!

Insertion TLDR

- Find where the item goes by repeated binary search
- If there's room, just add it
- If there's not room, split things until there is

Let's do it together!

$$M = 3, L = 3$$

Ď

Running Time of Find

- Maximum number of leaves:
 - $\frac{2n}{L}$
 - $\Theta\left(\frac{n}{L}\right)$
- Maximum height of the tree:
 - $2\log_M \frac{2n}{L}$
 - $\Theta\left(\log_M \frac{n}{L}\right)$
- Find:
 - One binary search per level of the tree
 - $\Theta(\log_2 M)$ per search
 - One binary search in the leaf
 - $\Theta(\log_2 L)$

Overall: $\Theta\left(\log_2 M \cdot \log_M \frac{n}{L} + \log_2 L\right)$

Usually simplified to:

 $\Theta(\log_2 M \cdot \log_M n)$

Running Time of Insert

- Find:
 - $\Theta(\log_2 M \cdot \log_M n)$
- Add item to leaf:
 - $\Theta(L)$
- Split a leaf
 - $\Theta(L)$
- Split one internal node:
 - $\Theta(M)$

```
Overall: \Theta(L + M \cdot \log_M n)
Usually simplified to: \Theta(\log_2 M \cdot \log_M n)
```


Delete Summary

- Find the item
- Remove the item from the leaf
 - If that causes the leaf to be under-full, adopt from a neighbor
 - If that would cause the neighbor to be under-full, merge those two leaves
 - Update the parent
 - If that causes the parent to be under-full, adopt from a neighbor
 - If that causes the neighbor to be under-full, merge
 - Update the parent

• ...

Delete TLDR

- Find and remove from leaf
- Keep doing this until everything is "full enough":
 - If the node is now too small, adopt from a neighbor
 - If the neighbor is too small then merge

Next topic: Hash Tables

Data Structure	Time to insert	Time to find	Time to delete			
Unsorted Array	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$			
Unsorted Linked List	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$			
Sorted Array	$\Theta(n)$	$\Theta(\log n)$	$\Theta(n)$			
Sorted Linked List	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$			
Binary Search Tree	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$			
AVL Tree	$\Theta(\log n)$	$\Theta(\log n)$	$\Theta(\log n)$			
Hash Table (Worst case)	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$			
Hash Table (Average)	Θ(1)	Θ(1)	Θ(1)			

Two Different ideas of "Average"

Expected Time

- The expected number of operations a randomly-chosen input uses
- Assumed randomness from somewhere
 - Most simply: from the input
 - Preferably: from the algorithm/data structure itself
- f(n) = sum of the running times for each input of size n divided by the number of inputs of size n

Amortized Time

- The long-term average per-execution cost (in the worst case)
- Rather than look at the worst case of one execution, look at the total worst case of a sequential chain of many executions
 - Why? The worst case may be guaranteed to be rare
- f(n) = the sum of the running times from a sequence of n sequential calls to the function divided by n

Amortized Example

ArrayList Insert:

• Worst case: $\Theta(n)$

0	1	2	3	4	5	6	7	8
---	---	---	---	---	---	---	---	---

Amortized Example

- ArrayList Insert:
 - First 8 inserts: 1 operation each
 - 9th insert: 9 operations
 - Next 7 inserts: 1 operation each
 - 17th insert: 17 operations
 - Next 15 inserts: 1 operation each

•

Do x operations with cost 1 Do 1 operation with cost xDo x operations with cost 1 Do 1 operation with cost 2xDo 2x operations with cost 1 Do 1 operation with cost 4xDo 4x operations with cost 1 Do 1 operation with cost 8x...

Amortized: each operation cost 2 operations $\Theta(1)$

0	1	2	3	4	5	6	7	8							
---	---	---	---	---	---	---	---	---	--	--	--	--	--	--	--

Hash Tables

- Motivation:
 - Why not just have a gigantic array?

Problem?

Hash Tables

• Idea:

- Have a small array to store information
- Use a **hash function** to convert the key into an index
 - Hash function should "scatter" the keys, behave as if it randomly assigned keys to indices
- Store key at the index given by the hash function
- Do something if two keys map to the same place (should be very rare)
 - Collision resolution

Example

- Key: Phone Number
- Value: People
- Table size: 10
- h(phone) = number as an integer % 10
- h(8675309) = 9

What Influences Running time?

Properties of a "Good" Hash

- Definition: A hash function maps objects to integers
- Should be very efficient
 - Calculating the hash should be negligible
- Should randomly scatter objects
 - Objects that are similar to each other should be likely to end up far away
- Should use the entire table
 - There should not be any indices in the table that nothing can hash to
 - Picking a table size that is prime helps with this
- Should use things needed to "identify" the object
 - Use only fields you would check for a .equals method be included in calculating the hash
 - More fields typically leads to fewer collisions, but less efficient calculation

A Bad Hash (and phone number trivia)

- h(phone) = the first digit of the phone number
 - No US phone numbers start with 1 or 0
 - If we're sampling from this class, 2 is by far the most likely

Compare These Hash Functions (for strings)

- Let $s = s_0 s_1 s_2 \dots s_{m-1}$ be a string of length m
 - Let $a(s_i)$ be the ascii encoding of the character s_i
- $\bullet \ h_1(s) = a(s_0)$
- $\bullet \ h_2(s) = \left(\sum_{i=0}^{m-1} a(s_i)\right)$
- $h_3(s) = \left(\sum_{i=0}^{m-1} a(s_i) \cdot 37^i\right)$

Collision Resolution

- A Collision occurs when we want to insert something into an alreadyoccupied position in the hash table
- 2 main strategies:
 - Separate Chaining
 - Use a secondary data structure to contain the items
 - E.g. each index in the hash table is itself a linked list
 - Open Addressing
 - Use a different spot in the table instead
 - Linear Probing
 - Quadratic Probing
 - Double Hashing

Separate Chaining Insert

- To insert k, v:
 - Compute the index using i = h(k) % size
 - Add the key-value pair to the data structure at table[i]

Separate Chaining Find

- To find *k*:
 - Compute the index using i = h(k) % size
 - Call find with the key on the data structure at table[i]

Separate Chaining Delete

- To delete k:
 - Compute the index using i = h(k) % size
 - Call delete with the key on the data structure at table[i]

Formal Running Time Analysis

 The load factor of a hash table represents the average number of items per "bucket"

•
$$\lambda = \frac{n}{size}$$

- Assume we have a has table that uses a linked-list for separate chaining
 - What is the expected number of comparisons needed in an unsuccessful find?
 - What is the expected number of comparisons needed in a successful find?
- How can we make the expected running time $\Theta(1)$?

Load Factor?

Load Factor? k, vk, v|k,v||k,v||k,v|k, vk, v|k,v|k, vk, vk, v0 2 3 4 5 6 8 9