
CSE 332 Winter 2024
Lecture 10: B Trees and Hashing

Nathan Brunelle

http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Memory Hierarchy

CPU

L1 Cache

L2 Cache

Main Memory

Disk

Size: 1 KB
Speed: Free

Size: 128 KB
Speed: 2 cycles per lookup

Size: 2 MB
Speed: 30 cycles per lookup

Size: 2 GB
Speed: 250 cycles per lookup

Size: 1 TB
Speed: 8,000,000 cycles per lookup

Large memory is slow to access.
We use different “layers” or memory
to balance quantity of storage with
speed of access.
Ideally the data we want is in small
memory, but we may need to go deep

B Trees Motivation

• Memory Locality
• Observation: in practice, when you read from memory you’re likely to soon

thereafter read from nearby memory

• When memory is “fetched”, it’s collected in blocks at a time

• Works well for arrays (they’re contiguous is memory)

• May not be helpful for linked lists, BSTs, etc. (pointers could go wherever)

• Solution: Have a BST-like data structure which can take advantage of
locality

First Idea

• BST nodes have a lot of information inside them

• We don’t need that information for “intermediate” nodes

• Solution: Delay loading anything except keys as long as possible

9

3 10

1
16

0

6

5 7

Key = 9
Value = “hello”
Left = Node 3

Right = Node 10

Second Idea

• Nodes may not be close to each other in memory

• In the worst case, each step in a traversal could go deep in memory

• Solution: Increase branching factor of tree, load blocks of keys at a time
• M-ary tree: each node has at most M children

• Choose M to snugly fit in a block

B Trees (aka B+ Trees)

• Two types of nodes:
• Internal Nodes

• Sorted array of 𝑀 − 1 keys

• Has 𝑀 children

• No other data!

• Leaf Nodes
• Sorted array of 𝐿 key-value pairs

• Subtree between values 𝑎 and 𝑏 must contain only keys that are ≥ 𝑎
and < 𝑏
• If 𝑎 is missing use −∞

• If 𝑏 is missing use ∞

3 5 9

1

2

3

4

20 25 55

5

6

7

9

10

13

14

17

20

24

25

27

30

38

40

50

55

90

13 38

𝑎 𝑏

𝑎 ≤ 𝑘 < 𝑏

Find

• Start at the root node

• Binary search internal nodes to identify correct subtree

• Repeat until you reach a leaf node

• Binary search the leaf to get the value

3 5 9

1

2

3

4

20 25 55

5

6

7

9

10

13

14

17

20

24

25

27

30

38

40

50

55

90

13 38

Aside: Implementation

• What an internal node class might look like:
• int M

• int[] keys

• Node[] children

• int num_children

• What a leaf node class might look like:
• int L

• E[] data

• int num_items

B Tree Structure Requirements

• Root:
• If the tree has ≤ 𝐿 items then root is a leaf node
• Otherwise it is an internal node

• Internal Nodes:

• Must have at least
𝑀

2
children (at least half full)

• Unless it’s the root and there aren’t enough items to have that many children

• Leaf Nodes:

• Must have at least Must have at least
𝐿

2
items (at least half full)

• Unless it’s the root and there aren’t at least
𝐿

2
items

• All leaves are at the same depth

Insertion Summary

• Binary search to find which leaf should contain the new item

• If there’s room, add it to the leaf array (maintaining sorted order)

• If there’s not room, split

• Make a new leaf node, move the larger
𝐿+1

2
items to it

• If there’s room in the parent internal node, add new leaf to it (with new key
bound value)

• If there’s not room in the parent internal node, split that!

• Make a new internal node and have it point to the larger
𝑀+1

2

• If there’s room in the parent internal node, add this internal node to it

• If there’s not room, repeat this process until there is!

Insertion TLDR

• Find where the item goes by repeated binary search

• If there’s room, just add it

• If there’s not room, split things until there is

Insert Example

Insert 22

3 5 9

1

2

3

4

20 25 55

5

6

7

9

10

13

14

17

20

24

25

27

30

38

40

50

55

90

13 38

Insert Example

Insert 22

3 5 9

1

2

3

4

20 25 55

5

6

7

9

10

13

14

17

20

22

24

25

27

30

38

40

50

55

90

13 38

Insert Example

Insert 26

3 5 9

1

2

3

4

20 25 55

5

6

7

9

10

13

14

17

20

24

25

27

30

38

40

50

55

90

13 38

Insert Example

Insert 26

3 5 9

1

2

3

4

20 25 27 55

5

6

7

9

10

13

14

17

20

24

25

26

38

40

50

55

90

13 38

27

30

Insert Example

Insert 8

3 5 9

1

2

3

4

20 25 55

5

6

7

9

10

13

14

17

20

24

25

27

30

38

40

50

55

90

13 38

Insert Example

Insert 8

3 5 9

1

2

3

4

5

6

9

10

5

6

7

5

6

8

7

8
Split!

7

8

Split!
9

7

8

9

10

3 5

1

2

3

4

5

6

Insert Example

Insert 8

20 25 55

13

14

17

20

24

25

27

30

38

40

50

55

90

13 38

9

7

8

9

10

3 5

1

2

3

4

5

6

Insert Example

Insert 8

20 25 55

13

14

17

20

24

25

27

30

38

40

50

55

90

7 13 38

9

7

8

9

10

3 5

1

2

3

4

5

6

Let’s do it together!

• 𝑀 = 3, 𝐿 = 3

• Insert all of these:

Running Time of Find

• Maximum number of leaves:

•
2𝑛

𝐿

• Θ
𝑛

𝐿

• Maximum height of the tree:

• 2 log𝑀
2𝑛

𝐿

• Θ log𝑀
𝑛

𝐿

• Find:
• One binary search per level of the tree

• Θ(log2𝑀) per search

• One binary search in the leaf
• Θ log2 𝐿

Overall: Θ log2𝑀 ⋅ log𝑀
𝑛

𝐿
+ log2 𝐿

Usually simplified to:
Θ log2𝑀 ⋅ log𝑀 𝑛

Running Time of Insert

• Find:
• Θ log2𝑀 ⋅ log𝑀 𝑛

• Add item to leaf:
• Θ(𝐿)

• Split a leaf
• Θ(𝐿)

• Split one internal node:
• Θ(𝑀)

Overall: Θ 𝐿 +𝑀 ⋅ log𝑀 𝑛
Usually simplified to:

Θ log2𝑀 ⋅ log𝑀 𝑛

Delete

• Recall: all nodes must be at least half full (except root at startup)

delete 50

20 25 55

13

14

17

20

24

25

27

30

38

40

50

55

90

7 13 38

9

7

8

9

10

3 5

1

2

3

4

5

6

Delete

• Recall: all nodes must be at least half full (except root at startup)

delete 24

20 25 55

13

14

17

20

24

25

27

30

38

40

50

55

90

7 13 38

9

7

8

9

10

3 5

1

2

3

4

5

6

Delete

• Recall: all nodes must be at least half full (except root at startup)

delete 24

17 25 55

13

14

17

20

25

27

30

38

40

50

55

90

7 13 38

9

7

8

9

10

3 5

1

2

3

4

5

6

Delete

• Recall: all nodes must be at least half full (except root at startup)

delete 5

17 25 55

13

14

17

20

25

27

30

38

40

50

55

90

7 13 38

9

7

8

9

10

3 5

1

2

3

4

5

6

Delete

• Recall: all nodes must be at least half full (except root at startup)

delete 5

17 25 55

13

14

17

20

25

27

30

38

40

50

55

90

7 13 38

9

7

8

9

10

3

1

2

3

4

6

5

6

Delete

• Recall: all nodes must be at least half full (except root at startup)

delete 1

17 25 55

13

14

17

20

25

27

30

38

40

50

55

90

7 13 38

9

7

8

9

10

3

1

2

3

4

Delete

• Recall: all nodes must be at least half full (except root at startup)

delete 1

17 25 55

13

14

17

20

25

27

30

38

40

50

55

90

7 13 38

9

7

8

9

10

2

3

4

3

4

Delete

• Recall: all nodes must be at least half full (except root at startup)

delete 1

17 25 55

13

14

17

20

25

27

30

38

40

50

55

90

13 38

9

7

8

9

10

3 9

2

3

4

7

8

9

10

Delete Summary

• Find the item

• Remove the item from the leaf
• If that causes the leaf to be under-full, adopt from a neighbor

• If that would cause the neighbor to be under-full, merge those two leaves

• Update the parent
• If that causes the parent to be under-full, adopt from a neighbor

• If that causes the neighbor to be under-full, merge

• Update the parent
• …

Delete TLDR

• Find and remove from leaf

• Keep doing this until everything is “full enough”:
• If the node is now too small, adopt from a neighbor

• If the neighbor is too small then merge

Next topic: Hash Tables

Data Structure Time to insert Time to find Time to delete

Unsorted Array Θ(𝑛) Θ(𝑛) Θ(𝑛)

Unsorted Linked List Θ(𝑛) Θ(𝑛) Θ(𝑛)

Sorted Array Θ 𝑛 Θ(log 𝑛) Θ(𝑛)

Sorted Linked List Θ 𝑛 Θ 𝑛 Θ 𝑛

Binary Search Tree Θ 𝑛 Θ 𝑛 Θ 𝑛

AVL Tree Θ(log 𝑛) Θ(log 𝑛) Θ(log 𝑛)

Hash Table (Worst case) Θ(𝑛) Θ(𝑛) Θ(𝑛)

Hash Table (Average) Θ 1 Θ 1 Θ 1

Two Different ideas of “Average”

• Expected Time
• The expected number of operations a randomly-chosen input uses
• Assumed randomness from somewhere

• Most simply: from the input
• Preferably: from the algorithm/data structure itself

• 𝑓 𝑛 = sum of the running times for each input of size 𝑛 divided by the
number of inputs of size 𝑛

• Amortized Time
• The long-term average per-execution cost (in the worst case)
• Rather than look at the worst case of one execution, look at the total worst

case of a sequential chain of many executions
• Why? The worst case may be guaranteed to be rare

• 𝑓 𝑛 = the sum of the running times from a sequence of 𝑛 sequential calls to
the function divided by 𝑛

Amortized Example

• ArrayList Insert:
• Worst case: Θ(𝑛)

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

Amortized Example

• ArrayList Insert:
• First 8 inserts: 1 operation each

• 9th insert: 9 operations

• Next 7 inserts: 1 operation each

• 17th insert: 17 operations

• Next 15 inserts: 1 operation each

• …

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

Do 𝑥 operations with cost 1
Do 1 operation with cost 𝑥
Do 𝑥 operations with cost 1
Do 1 operation with cost 2𝑥
Do 2𝑥 operations with cost 1
Do 1 operation with cost 4𝑥
Do 4𝑥 operations with cost 1
Do 1 operation with cost 8𝑥
…
Amortized: each operation cost 2 operations

Θ(1)

Hash Tables

• Motivation:
• Why not just have a gigantic array?

Problem?

Hash Tables

• Idea:
• Have a small array to store information

• Use a hash function to convert the key into an index
• Hash function should “scatter” the keys, behave as if it randomly assigned keys to indices

• Store key at the index given by the hash function

• Do something if two keys map to the same place (should be very rare)
• Collision resolution

ℎ(𝑘)

Key Object

Index
between 0
and size-1

Insert / find /
delete & value

Example

• Key: Phone Number

• Value: People

• Table size: 10

• ℎ 𝑝ℎ𝑜𝑛𝑒 = number as an integer % 10

• ℎ 8675309 = 9

0 1 2 3 4 5 6 7 8 9

What Influences Running time?

Properties of a “Good” Hash

• Definition: A hash function maps objects to integers

• Should be very efficient
• Calculating the hash should be negligible

• Should randomly scatter objects
• Objects that are similar to each other should be likely to end up far away

• Should use the entire table
• There should not be any indices in the table that nothing can hash to
• Picking a table size that is prime helps with this

• Should use things needed to “identify” the object
• Use only fields you would check for a .equals method be included in calculating the hash
• More fields typically leads to fewer collisions, but less efficient calculation

A Bad Hash (and phone number trivia)

• ℎ 𝑝ℎ𝑜𝑛𝑒 = the first digit of the phone number
• No US phone numbers start with 1 or 0

• If we’re sampling from this class, 2 is by far the most likely

0 1 2 3 4 5 6 7 8 9

Compare These Hash Functions (for strings)

• Let 𝑠 = 𝑠0𝑠1𝑠2…𝑠𝑚−1 be a string of length 𝑚
• Let 𝑎(𝑠𝑖) be the ascii encoding of the character 𝑠𝑖

• ℎ1 𝑠 = 𝑎 𝑠0

• ℎ2 𝑠 = σ𝑖=0
𝑚−1𝑎 𝑠𝑖

• ℎ3 𝑠 = σ𝑖=0
𝑚−1𝑎 𝑠𝑖 ⋅ 37𝑖

Collision Resolution

• A Collision occurs when we want to insert something into an already-
occupied position in the hash table

• 2 main strategies:
• Separate Chaining

• Use a secondary data structure to contain the items
• E.g. each index in the hash table is itself a linked list

• Open Addressing
• Use a different spot in the table instead

• Linear Probing

• Quadratic Probing

• Double Hashing

0 1 2 3 4 5 6 7 8 9

Separate Chaining Insert

• To insert 𝑘, 𝑣:
• Compute the index using 𝑖 = ℎ 𝑘 % 𝑠𝑖𝑧𝑒

• Add the key-value pair to the data structure at 𝑡𝑎𝑏𝑙𝑒 𝑖

0 1 2 3 4 5 6 7 8 9

𝑘, 𝑣 𝑘, 𝑣

𝑘, 𝑣

Separate Chaining Find

• To find 𝑘:
• Compute the index using 𝑖 = ℎ 𝑘 % 𝑠𝑖𝑧𝑒

• Call find with the key on the data structure at 𝑡𝑎𝑏𝑙𝑒 𝑖

0 1 2 3 4 5 6 7 8 9

𝑘, 𝑣 𝑘, 𝑣

𝑘, 𝑣

Separate Chaining Delete

• To delete 𝑘:
• Compute the index using 𝑖 = ℎ 𝑘 % 𝑠𝑖𝑧𝑒

• Call delete with the key on the data structure at 𝑡𝑎𝑏𝑙𝑒 𝑖

0 1 2 3 4 5 6 7 8 9

𝑘, 𝑣 𝑘, 𝑣

𝑘, 𝑣

Formal Running Time Analysis

• The load factor of a hash table represents the average number of
items per “bucket”

• 𝜆 =
𝑛

𝑠𝑖𝑧𝑒

• Assume we have a has table that uses a linked-list for separate
chaining
• What is the expected number of comparisons needed in an unsuccessful find?

• What is the expected number of comparisons needed in a successful find?

• How can we make the expected running time Θ(1)?

Load Factor?

0 1 2 3 4 5 6 7 8 9

𝑘, 𝑣 𝑘, 𝑣

𝑘, 𝑣

Load Factor?

0 1 2 3 4 5 6 7 8 9

𝑘, 𝑣 𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

Load Factor?

0 1 2 3 4 5 6 7 8 9

𝑘, 𝑣 𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣 𝑘, 𝑣𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

	Slide 1: CSE 332 Winter 2024 Lecture 10: B Trees and Hashing
	Slide 2: Memory Hierarchy
	Slide 3: B Trees Motivation
	Slide 4: First Idea
	Slide 5: Second Idea
	Slide 6: B Trees (aka B+ Trees)
	Slide 7: Find
	Slide 8: Aside: Implementation
	Slide 9: B Tree Structure Requirements
	Slide 10: Insertion Summary
	Slide 11: Insertion TLDR
	Slide 12: Insert Example
	Slide 13: Insert Example
	Slide 14: Insert Example
	Slide 15: Insert Example
	Slide 16: Insert Example
	Slide 17: Insert Example
	Slide 18: Insert Example
	Slide 19: Insert Example
	Slide 20: Let’s do it together!
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25: Running Time of Find
	Slide 26: Running Time of Insert
	Slide 27: Delete
	Slide 28: Delete
	Slide 29: Delete
	Slide 30: Delete
	Slide 31: Delete
	Slide 32: Delete
	Slide 33: Delete
	Slide 34: Delete
	Slide 35: Delete Summary
	Slide 36: Delete TLDR
	Slide 37: Next topic: Hash Tables
	Slide 38: Two Different ideas of “Average”
	Slide 39: Amortized Example
	Slide 40: Amortized Example
	Slide 41: Hash Tables
	Slide 42: Problem?
	Slide 43: Hash Tables
	Slide 44: Example
	Slide 45: What Influences Running time?
	Slide 46: Properties of a “Good” Hash
	Slide 47: A Bad Hash (and phone number trivia)
	Slide 48: Compare These Hash Functions (for strings)
	Slide 49: Collision Resolution
	Slide 50: Separate Chaining Insert
	Slide 51: Separate Chaining Find
	Slide 52: Separate Chaining Delete
	Slide 53: Formal Running Time Analysis
	Slide 54: Load Factor?
	Slide 55: Load Factor?
	Slide 56: Load Factor?

