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Memory Hierarchy

CPU

L1 Cache

L2 Cache

Main Memory

Disk

Size: 1 KB
Speed: Free

Size: 128 KB
Speed: 2 cycles per lookup

Size: 2 MB
Speed: 30 cycles per lookup

Size: 2 GB
Speed: 250 cycles per lookup

Size: 1 TB
Speed: 8,000,000 cycles per lookup

Large memory is slow to access.
We use different “layers” or memory 
to balance quantity of storage with 
speed of access.
Ideally the data we want is in small 
memory, but we may need to go deep



B Trees Motivation

• Memory Locality
• Observation: in practice, when you read from memory you’re likely to soon 

thereafter read from nearby memory

• When memory is “fetched”, it’s collected in blocks at a time

• Works well for arrays (they’re contiguous is memory)

• May not be helpful for linked lists, BSTs, etc. (pointers could go wherever)

• Solution: Have a BST-like data structure which can take advantage of 
locality



First Idea

• BST nodes have a lot of information inside them 

• We don’t need that information for “intermediate” nodes

• Solution: Delay loading anything except keys as long as possible
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Second Idea

• Nodes may not be close to each other in memory

• In the worst case, each step in a traversal could go deep in memory

• Solution: Increase branching factor of tree, load blocks of keys at a time
• M-ary tree: each node has at most M children

• Choose M to snugly fit in a block



B Trees (aka B+ Trees)

• Two types of nodes:
• Internal Nodes

• Sorted array of 𝑀 − 1 keys

• Has 𝑀 children

• No other data!

• Leaf Nodes
• Sorted array of 𝐿 key-value pairs

• Subtree between values 𝑎 and 𝑏 must contain only keys that are ≥ 𝑎
and < 𝑏
• If 𝑎 is missing use −∞

• If 𝑏 is missing use ∞
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Find

• Start at the root node

• Binary search internal nodes to identify correct subtree

• Repeat until you reach a leaf node

• Binary search the leaf to get the value
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Aside: Implementation

• What an internal node class might look like:
• int M

• int[] keys

• Node[] children

• int num_children

• What a leaf node class might look like:
• int L

• E[] data

• int num_items



B Tree Structure Requirements

• Root:
• If the tree has ≤ 𝐿 items then root is a leaf node
• Otherwise it is an internal node

• Internal Nodes:

• Must have at least 
𝑀

2
children (at least half full)

• Unless it’s the root and there aren’t enough items to have that many children

• Leaf Nodes:

• Must have at least Must have at least 
𝐿

2
items (at least half full)

• Unless it’s the root and there aren’t at least 
𝐿

2
items 

• All leaves are at the same depth



Insertion Summary

• Binary search to find which leaf should contain the new item

• If there’s room, add it to the leaf array (maintaining sorted order)

• If there’s not room, split

• Make a new leaf node, move the larger 
𝐿+1

2
items to it

• If there’s room in the parent internal node, add new leaf to it (with new key 
bound value)

• If there’s not room in the parent internal node, split that!

• Make a new internal node and have it point to the larger 
𝑀+1

2

• If there’s room in the parent internal node, add this internal node to it

• If there’s not room, repeat this process until there is!



Insertion TLDR

• Find where the item goes by repeated binary search

• If there’s room, just add it

• If there’s not room, split things until there is



Insert Example

Insert 22
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Insert Example

Insert 22
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Insert Example

Insert 26
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Insert Example

Insert 26
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Insert Example

Insert 8
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Insert Example

Insert 8
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Insert Example

Insert 8
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Insert Example

Insert 8
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Let’s do it together!

• 𝑀 = 3, 𝐿 = 3

• Insert all of these:











Running Time of Find

• Maximum number of leaves:

•
2𝑛

𝐿

• Θ
𝑛

𝐿

• Maximum height of the tree:

• 2 log𝑀
2𝑛

𝐿

• Θ log𝑀
𝑛

𝐿

• Find:
• One binary search per level of the tree

• Θ(log2𝑀) per search

• One binary search in the leaf
• Θ log2 𝐿

Overall: Θ log2𝑀 ⋅ log𝑀
𝑛

𝐿
+ log2 𝐿

Usually simplified to:
Θ log2𝑀 ⋅ log𝑀 𝑛



Running Time of Insert

• Find:
• Θ log2𝑀 ⋅ log𝑀 𝑛

• Add item to leaf:
• Θ(𝐿)

• Split a leaf
• Θ(𝐿)

• Split one internal node:
• Θ(𝑀)

Overall: Θ 𝐿 +𝑀 ⋅ log𝑀 𝑛
Usually simplified to:

Θ log2𝑀 ⋅ log𝑀 𝑛



Delete

• Recall: all nodes must be at least half full (except root at startup)

delete 50
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Delete

• Recall: all nodes must be at least half full (except root at startup)

delete 24
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Delete

• Recall: all nodes must be at least half full (except root at startup)

delete 24
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Delete

• Recall: all nodes must be at least half full (except root at startup)

delete 5
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Delete

• Recall: all nodes must be at least half full (except root at startup)

delete 5
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Delete

• Recall: all nodes must be at least half full (except root at startup)

delete 1

17 25 55

13

14

17

20

25

27

30

38

40

50

55

90

7 13 38

9

7

8

9

10

3

1

2

3

4



Delete

• Recall: all nodes must be at least half full (except root at startup)

delete 1
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Delete

• Recall: all nodes must be at least half full (except root at startup)

delete 1
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Delete Summary

• Find the item

• Remove the item from the leaf
• If that causes the leaf to be under-full, adopt from a neighbor

• If that would cause the neighbor to be under-full, merge those two leaves

• Update the parent
• If that causes the parent to be under-full, adopt from a neighbor

• If that causes the neighbor to be under-full, merge

• Update the parent
• …



Delete TLDR

• Find and remove from leaf

• Keep doing this until everything is “full enough”:
• If the node is now too small, adopt from a neighbor

• If the neighbor is too small then merge



Next topic: Hash Tables

Data Structure Time to insert Time to find Time to delete

Unsorted Array Θ(𝑛) Θ(𝑛) Θ(𝑛)

Unsorted Linked List Θ(𝑛) Θ(𝑛) Θ(𝑛)

Sorted Array Θ 𝑛 Θ(log 𝑛) Θ(𝑛)

Sorted Linked List Θ 𝑛 Θ 𝑛 Θ 𝑛

Binary Search Tree Θ 𝑛 Θ 𝑛 Θ 𝑛

AVL Tree Θ(log 𝑛) Θ(log 𝑛) Θ(log 𝑛)

Hash Table (Worst case) Θ(𝑛) Θ(𝑛) Θ(𝑛)

Hash Table (Average) Θ 1 Θ 1 Θ 1



Two Different ideas of “Average”

• Expected Time
• The expected number of operations a randomly-chosen input uses
• Assumed randomness from somewhere

• Most simply: from the input
• Preferably: from the algorithm/data structure itself

• 𝑓 𝑛 = sum of the running times for each input of size 𝑛 divided by the 
number of inputs of size 𝑛

• Amortized Time
• The long-term average per-execution cost (in the worst case)
• Rather than look at the worst case of one execution, look at the total worst 

case of a sequential chain of many executions
• Why? The worst case may be guaranteed to be rare

• 𝑓 𝑛 = the sum of the running times from a sequence of 𝑛 sequential calls to 
the function divided by 𝑛



Amortized Example

• ArrayList Insert:
• Worst case: Θ(𝑛)

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8



Amortized Example

• ArrayList Insert:
• First 8 inserts: 1 operation each

• 9th insert: 9 operations

• Next 7 inserts: 1 operation each

• 17th insert: 17 operations

• Next 15 inserts: 1 operation each

• …

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

Do 𝑥 operations with cost 1
Do 1 operation with cost 𝑥
Do 𝑥 operations with cost 1
Do 1 operation with cost 2𝑥
Do 2𝑥 operations with cost 1
Do 1 operation with cost 4𝑥
Do 4𝑥 operations with cost 1
Do 1 operation with cost 8𝑥
…
Amortized: each operation cost 2 operations

Θ(1)



Hash Tables

• Motivation:
• Why not just have a gigantic array?



Problem?



Hash Tables

• Idea:
• Have a small array to store information

• Use a hash function to convert the key into an index
• Hash function should “scatter” the keys, behave as if it randomly assigned keys to indices

• Store key at the index given by the hash function

• Do something if two keys map to the same place (should be very rare)
• Collision resolution

ℎ(𝑘)

Key Object

Index 
between 0 
and size-1

Insert / find /
delete & value



Example

• Key: Phone Number

• Value: People

• Table size: 10

• ℎ 𝑝ℎ𝑜𝑛𝑒 = number as an integer % 10

• ℎ 8675309 = 9

0 1 2 3 4 5 6 7 8 9



What Influences Running time?



Properties of a “Good” Hash

• Definition: A hash function maps objects to integers

• Should be very efficient
• Calculating the hash should be negligible

• Should randomly scatter objects
• Objects that are similar to each other should be likely to end up far away

• Should use the entire table
• There should not be any indices in the table that nothing can hash to
• Picking a table size that is prime helps with this

• Should use things needed to “identify” the object
• Use only fields you would check for a .equals method  be included in calculating the hash
• More fields typically leads to fewer collisions, but less efficient calculation



A Bad Hash (and phone number trivia)

• ℎ 𝑝ℎ𝑜𝑛𝑒 = the first digit of the phone number
• No US phone numbers start with 1 or 0

• If we’re sampling from this class, 2 is by far the most likely

0 1 2 3 4 5 6 7 8 9



Compare These Hash Functions (for strings)

• Let 𝑠 = 𝑠0𝑠1𝑠2…𝑠𝑚−1 be a string of length 𝑚
• Let 𝑎(𝑠𝑖) be the ascii encoding of the character 𝑠𝑖

• ℎ1 𝑠 = 𝑎 𝑠0

• ℎ2 𝑠 = σ𝑖=0
𝑚−1𝑎 𝑠𝑖

• ℎ3 𝑠 = σ𝑖=0
𝑚−1𝑎 𝑠𝑖 ⋅ 37𝑖



Collision Resolution

• A Collision occurs when we want to insert something into an already-
occupied position in the hash table

• 2 main strategies:
• Separate Chaining

• Use a secondary data structure to contain the items
• E.g. each index in the hash table is itself a linked list

• Open Addressing
• Use a different spot in the table instead

• Linear Probing

• Quadratic Probing

• Double Hashing

0 1 2 3 4 5 6 7 8 9



Separate Chaining Insert

• To insert 𝑘, 𝑣:
• Compute the index using 𝑖 = ℎ 𝑘 % 𝑠𝑖𝑧𝑒

• Add the key-value pair to the data structure at 𝑡𝑎𝑏𝑙𝑒 𝑖

0 1 2 3 4 5 6 7 8 9

𝑘, 𝑣 𝑘, 𝑣

𝑘, 𝑣



Separate Chaining Find

• To find 𝑘:
• Compute the index using 𝑖 = ℎ 𝑘 % 𝑠𝑖𝑧𝑒

• Call find with the key on the data structure at 𝑡𝑎𝑏𝑙𝑒 𝑖

0 1 2 3 4 5 6 7 8 9

𝑘, 𝑣 𝑘, 𝑣

𝑘, 𝑣



Separate Chaining Delete

• To delete 𝑘:
• Compute the index using 𝑖 = ℎ 𝑘 % 𝑠𝑖𝑧𝑒

• Call delete with the key on the data structure at 𝑡𝑎𝑏𝑙𝑒 𝑖

0 1 2 3 4 5 6 7 8 9

𝑘, 𝑣 𝑘, 𝑣

𝑘, 𝑣



Formal Running Time Analysis

• The load factor of a hash table represents the average number of 
items per “bucket”

• 𝜆 =
𝑛

𝑠𝑖𝑧𝑒

• Assume we have a has table that uses a linked-list for separate 
chaining
• What is the expected number of comparisons needed in an unsuccessful find?

• What is the expected number of comparisons needed in a successful find?

• How can we make the expected running time Θ(1)?



Load Factor?
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Load Factor?

0 1 2 3 4 5 6 7 8 9

𝑘, 𝑣 𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣



Load Factor?
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