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Thinking through implementations

Data Structure Worst case time to insert Worst case time to deleteMin

Unsorted Array 0(1) O(n)
Unsorted Linked List 0(1) 0(n)
Sorted Circular Array O(n) O(n)
Sorted Linked List O(n) 0(1)
Binary Search Tree O(n) 0(1)
Binary Heap O(logn) O(logn)

Note: Assume we know the maximum size of the PQ in advance



Heap — Priority Queue Data Structure

* |dea: We need to keep some ordering, but it doesn’t need to be
perfectly sorted

* O(logn) worst case for deleteMin and insert
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insert(item){
put item in the “next open” spot (keep tree complete)
while (item.priority < parent(item).priority){
swap item with parent



deleteMin(){
ojolo

br = bottom-right item

move br to the root

while(br > either of its children){
swap br with its smallest child

}

return min



Percolate Up and Down

e Goal: restore the “Heap Property”

* Percolate Up:
* Take a node that may be smaller than a parent, repeatedly swap with a parent
until it is larger than its parent
* Percolate Down:
* Take a node that may be larger than one of its children, repeatedly swap with
smallest child until both children are larger
* Worst case running time of each:
* O(logn)



Representing a Heap 13 ]2)a|7|s]6|5]|59

* Every complete binary tree with the same
number of nodes uses the same positions
and edges

e Use an array to represent the heap
* Index of root: 1

e Parent of node i: B‘

e Left child of node i: 2 -1
* Right child of nodei:2-i + 1
e Location of the leaves: last half




Other Operations

* Increase Key
* Given the index of an item in the PQ, subtract from its priority value
* Update the priority, then percolate [up or down?]

* Decrease Key
* Given the index of an item in the PQ, add to its priority value
* Update the priority, then percolate [up or down?]

* Remove
e Given the item at the given index from the PQ



Building a Heap From “Scratch”

e Suppose we had n items and wanted to “heapify” them

10 | 3 | 15| 8 7 | 14

Violate Heap Property!

Two ways to “fix” the heap:
1) Percolate Up
2) Percolate Down




Floyd’s buildHeap method

* Working towards the root, one row at a time, percolate down

buildHeap(){
for(int i = size; i>0; i--){
percolateDown(i);
}
}
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Floyd’s buildHeap method
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buildHeap(){
How long did this take? for(int i = size; i>0; i--){

percolateDown(i);

}
* Worst case running time of buildHeap: J

* No node can percolate down more than the height of its subtree
* When i is a leaf:
* When i is second-from-last level:
* When i is third-from-last level:

e Overall Running time:
. 2 of the items are leaves

n .
* 2 of the items are at second-from-last level

n .
s of the items are at second-from-last level



End-of-Yarn Finding

1. Set aside the already-obtained “beginning”

2. If you see the end of the yarn, you’re done!

3. Separate the pile of yarn into 2 piles, note which connectsto_
the beginning (call it pile A, the other pile B) s |

Repeat on B
pile with end 5),

4. Count the number of strands crossing the piles

5. Ifthe count is even, pile A contains the end, else pile B does
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Analysis of Recursive Algorithms

e Overall structure of recursion:
Do some non-recursive “work”
* Do one or more recursive calls on some portion of your input
Do some more non-recursive “work”
e Repeat until you reach a base case

* Runningtime: T(n) =T(p,) + T(p,) + -+ T(p,) + f(n)
* The time it takes to run the algorithm on an input of size n is:
 The sum of how long it takes to run the same algorithm on each smaller input
e Plus the total amount of non-recursive work done at that step

e Usually:
« T(n) =a-T(§)+f(n)

* Called “divide and conquer”
*T(n) =T(n—c)+ f(n)

* Called “chip and conquer”



How Efficient Is It?

*T(n) = count(n) +T (ED

10 =547 2)
* Basecase: T(1) =5

T(n) = “cost” of running the
entire algorithm on an n inch string

count(n) = “cost” of
counting the crossing strands
(I arbitrarily picked 5)
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Let’s Solve the Recurrence!

(1) = 5 _
T(n) ]
__ |log, nj
flog,n]
T(n) = z 5 = 5 [log, 1] T(n) € 0(logn)

=1
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Recursive Linear Search

search(value, list){

if(list.isEmpty()){
return false;

{

if (value == list[0]){
return true;

}

list.remove(0);

return search(value, list);



Unrolling Method

* Repeatedly substitute the recursive part of the recurrence
cT(n)=Tn—-1) +c

cT(n)=Tn—-2)+c+c
eT(n)=T(n—3)+c+c+c

eT(n)=c+c+c+--+c

e How many c¢’s?



Recursive List Summation

sum(list){
return sum_helper(list, O, list.size);
}
sum_helper(list, low, high){
if (low == high){ return O; }
if (low == high-1){ return list[low]; }
middle = (high+low)/2;

return sum_helper(list, low, middle) + sum_helper(list, middle, high);



Tree Method

Red box represents a
problem instance

Blue value represents
time spent at that level of
recursion
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Recursive List Summation

logr, n

T(n) = zzi-c

=1




Binary Search

search(value, sortedArr){
return helper(value, sortedArr, O, sortedArr.length);

}
helper(value, arr, low, high){
if (low == high){ return false; }
mid = (high + low) / 2;
if (arr[mid] == value){ return true; }
if (arr[mid] < value){ return helper(value, arr, mid+1, high); }
else { return helper(value, arr, low, mid); }
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