CSE 332 Autumn 2023
Lecture 28: P and NP

Nathan Brunelle
http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

/ Bridges of Konigsberg

¥ WA BRE MG
SR G oy S
b Kl WL AR 77~
| R e =
\) L

The Pregel River runs through the city of Koenigsberg, creating 2 islands. Among
these 2 islands and the 2 sides of the river, there are 7 bridges. Is there any path
starting at one landmass which crosses each bridge exactly once?

Euler Path Problem

e Path:

* A sequence of nodes 14, V5, ... such that for every consecutive pair are
connected by an edge (i.e. (v;, V;41) is an edge for each i in the path)

e Euler Path:

* A path such that every edge in the graph appears exactly once
* If the graph is not simple then some pairs need to appear multiple times!

* Euler path problem:
* Given an undirected graph G = (V, E), does there exist an Euler path for ¢?

Examples

* Which of the graphs below have an Euler path?

Euler path exists!
No Euler path exists! AB,D,AC,D

Euler path exists!
AB,C,D,AC,B,D

Euler’s Theorem

* A graph has an Euler Path if and only if it is connected and has exactly
0 or 2 nodes with odd degree.

Algorithm for the Euler Path Problem

* Given an undirected graph G = (V, E), does there exist an Euler path
for G?

e Algorithm:
* Check if the graph is connected
* Check the degree of each node
* |f the number of nodes with odd degree is 0 or 2, return true
* Otherwise return false

* Running time?

A Seemingly Similar Problem

 Hamiltonian Path:
* A path that includes every node in the graph exactly once

 Hamiltonian Path Problem:
* Given a graph G = (V, E), does that graph have a Hamiltonian Path?

Truel
AB,C,E,G H,F,D

Algorithms for the Hamiltonian Path Problem

* Option 1:
* Explore all possible simple paths through the graph
* Check to see if any of those are length IV

* Option 2:
* Write down every sequence of nodes
* Check to see if any of those are a path

* Both options are examples of an Exhaustive Search (“Brute Force”)
algorithm

Option 2: List all sequences, look for a path

* Running time:
G =(V,E)
Number of permutations of V is |V|!
enl=n-n-1)-n—-2)-..-2-1
How does n! compare with 2™?
 n! e Q(2M)
Exponential running time!

Option 1: Explore all simple paths, check for
one of length V

* Running time:

¢ =(V,E)

* Number of paths
* Pick a first node (|V| choices)
* Pick a neighbor (up to |[V| — 1 choices)
* Pick a neighbor (up to |[V| — 2 choices)
eRepeat |VV| — 1 total times
* Overall: |V|! paths

* Exponential running time

RU n ﬂ | ng T| meS Running times we’ve seen:
« 0(D)
* O(logn)
* 0(n)
* O(nlogn)
« O0(n?)
« 02"

Operations

Input Size

Running Times

Table 2.1 The running times (rounded up) of different algorithms on inputs of
increasing size, for a processor performing a million high-level instructions per second.
In cases where the running time exceeds 10%° years, we simply record the algorithm as

taking a very long time.

n nlog, n n? n’ il 2t n!
n=10 < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec 4 sec
n=230 < 1 sec <lsec <1 sec < 1 sec < 1 sec 18 min 10%° years
n=>50 < 1 sec < 1 sec < 1 sec < 1 sec 11 min 36 years very long
n=100 < 1 sec < 1 sec < 1 sec 1 sec 12,892 years 10'7 years very long

n=1,000 < 1 sec < 1 sec 1 sec 18 min very long very long very long
n = 10,000 < 1 sec < 1 sec 2 min 12 days very long very long very long
n = 100,000 < 1 sec 2 sec 3 hours 32 years very long very long very long
n = 1,000,000 1 sec 20 sec 12 days 31,710 years very long very long very long

Tractability

e Tractable:
* Feasible to solve in the “real world”

* Intractable:
* Infeasible to solve in the “real world”
 Whether a problem is considered “tractable” or “intractable” depends on
the use case
* For machine learning, big data, etc. tractable might mean O(n) or even O (logn)
* For most applications it’s more like O(n3) or 0(n?)
* A strange pattern:

* Most “natural” problems are either done in small-degree polynomial (e.g. n?) or
else exponential time (e.g. 2™)

* It’s rare to have problems which require a running time of n°>, for example

Complexity Classes

* A Complexity Class is a set of problems (e.g. sorting, Euler path,
Hamiltonian path)

* The problems included in a complexity class are those whose most efficient
algorithm has a specific upper bound on its running time (or memory use, or...)

* Examples:

* The set of all problems that can be solved by an algorithm with running time O (n)

* Contains: Finding the minimum of a list, finding the maximum of a list, buildheap, summing a
list, etc.

* The set of all problems that can be solved by an algorithm with running time 0(n?)
* Contains: everything above as well as sorting, Euler path

* The set of all problems that can be solved by an algorithm with running time O (n!)
* Contains: everything we’ve seen in this class so far

Complexity Classes and Tractability

* To explore what problems are and are not tractable, we give some
complexity classes special names:

* Complexity Class P:

e Stands for “Polynomial”

* The set of problems which have an algorithm whose running time is O (n?) for some
choice of p € R.

* We say all problems belonging to P are “Tractable”

* Complexity Class EXP:

e Stands for “Exponentia

* The set of problems which have an algorithm whose running time is 0(2"p) for
some choiceof p € R

* We say all problems belonging to EXP — P are “Intractable”

* Disclaimer: Really it’s all problems outside of P, and there are problems which do not belong
to EXP, but we’re not going to worry about those in this class

|))

Important!
P c EXP

EXP a N d P Every problem within P is also within EXP

The intractable ones are the problems within EXP but NOT P

P
Polynomial
Upper bounded by n?

Tractable

Important!
Some of the problems listed in EXP could also be members of P
I\/I em b ers Since membership is determined by a problems most efficient
algorithm, knowing if a problem belongs to P requires knowing
the best algorithm possible!

Sorting
Shortest Path
Euler Path

Tractable

Studying Complexity and Tractability

* Organizing problems into complexity classes helps us to reason more
carefully and flexibly about tractability

* The goal for each problem is to either
* Find an efficient algorithm if it exists
* j.e.show it belongsto P

* Prove that no efficient algorithm exists
* j.e. show it does not belong to P

* Complexity classes allow us to reason about sets of problems at a
time, rather than each problem individually

* |f we can find more precise classes to organize problems into, we might be
able to draw conclusions about the entire class

* |t may be easier to show a problem belongs to class C than to P, so it may
help to show that C € P

Some problems in EXP seem “easier”

* There are some problems that we do not have polynomial time
algorithms to solve, but provided answers are easy to check

e Hamiltonian Path:

* |t's “hard” to look at a graph and determine whether it has a Hamiltonian
Path

* |t's “easy” to look at a graph and a candidate path together and determine
whether THAT path is a Hamiltonian Path

* It’s easy to verify whether a given path is a Hamiltonian path

Class NP

NP
* The set of problems for which a candidate solution can be verified in
polynomial time

 Stands for “Non-deterministic Polynomial”

» Corresponds to algorithms that can guess a solution (if it exists), that solution is then
verified to be correct in polynomial time

* Can also think of as allowing a special operation that allows the algorithm to magically
guess the right choice at each step of an exhaustive search

*PC NP
* Why?

EXPODONP2OP

NP

Nondeterministic Polynomial
P Verified in n? time
Polynomial

Upper bounded by nP

....
....
L 4

L2
...
Y
L2

Solving and Verifying Hamiltonian Path

* Give an algorithm to solve Hamiltonian Path
* Input: ¢ = (V,E)
e Output: True if ¢ has a Hamiltonian Path

e Algorithm: Check whether each permutation of V is a path.
* Running time: |V|!, so does not show whether it belongs to P

* Give an algorithm to verify Hamiltonian Path
* Input: ¢ = (V, E) and a sequence of nodes
e Output: True if that sequence of nodes is a Hamiltonian Path
e Algorithm:
* Check that each node appears in the sequence exactly once

* Check that the sequence is a path
* Runningtime: O(V - E), so it belongs to NP

Party Problem

| \ Draw Edges between people who don’t get along
7. How many people can | invite to a party if everyone must get along?
. | v

23

Independent Set

* Independent set:
« § € Visanindependent set if no two nodes in S share an edge

* Independent Set Problem:

* Given a graph G = (V, E) and a number k, determine whether there is an
independent set S of size k

Independent set of size 6

25

Solving and Veritying Independent Set

* Give an algorithm to solve independent set
* Input: ¢ = (V,E) and a number k
e Qutput: True if G has an independent set of size k

* Give an algorithm to verify independent set
* Input: G = (V,E),anumber k,andasetS SV
e Output: True if S is an independent set of size k

Generalized Baseball

Generalized Baseball

Need to place defenders on bases

such that every edge is defended
How many defenders would suffice?

/

Vertex Cover

* Vertex Cover:
« C € Visavertex cover if every edge in E has one of its endpoints in C

e \Vertex Cover Problem:

* Given a graph G = (V,E) and a number k, determine if there is a vertex
cover C of size k

Example

Vertex cover of size 5

30

Solving and Verifying Vertex Cover

* Give an algorithm to solve vertex cover
* Input: ¢ = (V,E) and a number k
e Output: True if G has a vertex cover of size k

* Give an algorithm to verify vertex cover
* Input: ¢ = (V,E),anumberk,andasetS C E
e Output: True if S is a vertex cover of size k

	Slide 1: CSE 332 Autumn 2023 Lecture 28: P and NP
	Slide 2: 7 Bridges of Königsberg
	Slide 3: Euler Path Problem
	Slide 4: Examples
	Slide 5: Euler’s Theorem
	Slide 6: Algorithm for the Euler Path Problem
	Slide 7: A Seemingly Similar Problem
	Slide 8: Algorithms for the Hamiltonian Path Problem
	Slide 9: Option 2: List all sequences, look for a path
	Slide 10: Option 1: Explore all simple paths, check for one of length cap V
	Slide 11: Running Times
	Slide 12: Running Times
	Slide 13: Tractability
	Slide 14: Complexity Classes
	Slide 15: Complexity Classes and Tractability
	Slide 16: cap E cap X cap P and cap P
	Slide 17: Members
	Slide 18: Studying Complexity and Tractability
	Slide 19: Some problems in cap E cap X cap P seem “easier”
	Slide 20: Class cap N cap P
	Slide 21: cap E cap X cap P superset of cap N cap P superset or equals cap P
	Slide 22: Solving and Verifying Hamiltonian Path
	Slide 23: Party Problem
	Slide 24: Independent Set
	Slide 25: Example
	Slide 26: Solving and Verifying Independent Set
	Slide 27: Generalized Baseball
	Slide 28: Generalized Baseball
	Slide 29: Vertex Cover
	Slide 30: Example
	Slide 31: Solving and Verifying Vertex Cover

