CSE 332 Autumn 2023
Lecture 26: Wisdom and
Deadlock

Nathan Brunelle
http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Back Account Using Synchronize (Final)

class BankAccount {
/
private int balance = 0;

SyNnc
SyNnc
SyNnc

nronized int getBalance() { return balance; }
nronized void setBalance(int x) { balance = x; }

hronized void withdraw(int amount) {
int b = getBalance();
if (amount > b)
throw new WithdrawToolargeException();
setBalance(b — amount); }

// other operations like deposit (which would use synchronized)

How to fix this?

Make a bigger critical section

class Stack {
private E[] array = (E[])new Object[SIZE];
private int index = -1;
synchronized boolean isEmpty() { ... }
synchronized void push(E val) { ... }
synchronized E pop() { ... }

/E’peek(){\
E ans = pop!();

push(ans) \L

return ans; C

How to fix this?

class Stack

private E[] array = (E[])new Object[SIZE];

{

private int index = -1;

sync
sync
sync
SYyNc

nronized boolean isEmpty() { ... }
hronized void push(E val) { ... }
hronized E pop() { ... }

nronized E peek(){
E ans = pop();
push(ans);
return ans;

Make a bigger critical section

Parallel Code Conventional Wisdom

Memory Categories

All memory must fit one of three categories:
1. Thread Local: Each thread has its own copyA\/

—\
2. Shared and Immutable: There is just one copy, but nothing will ever
writetoit 7/~

3. Shared and Mutable: There is just one copy, it may change
'/Requires Synchronization!

1\

Thread Local Memory

_//7

* Guidance: Whenever possible, avoid sharing resources

* Dodges all race conditions, since no other threads can touch it!
* No synchronizatic;n necessary! (Remember Ahmdal’s law)

- Use whenever threads do not need to communicate using the

resource
* E.g., each thread should have its Mbject .

* In most cases, most objects should be in this category
P fnd

Immutable Objects
\

* Guidance: Whenever possible, avoid changing objects

* Make new objects instead - /
* Parallel reads are not data races
* |f an object is never written to, no synchronization necessary!

e —

* Many programmers over-use mutation, minimize it

Sh/ated and I\/Iitiable Objects

* Guidance: For everything else, use locks
\ ——

* Avoid all data races — —
/’ . Every@ﬂd\wite should be Weven if it “seems safe”

* Almost every Java/C program with a data race is wrong D

* Even without data races, it still may be incorrect

 Watch fomas well!
e Use locks whenever there s an incomplete intermediate state!

WOCHH%

* For each location needing synchronization, have a lock that is always
held when reading or writing the location

* The same lock can (and often should) “guard” multiple fields/objects
* Clearly document what each lock guardsV
. ava, the lock shouldUsually be the object itself (i.e. “this”)
* Guidance: Have a mapping between memory locations and lock
objects and sti

O

Lock{iranulinty .

r locks guarding maore things each

°é0@l49£k for an entire data structure
* One lock shared by multiple objects (e.g. one lock for all bank accounts)

* Fine Grainew;guarding fewer things each
mper data structure location (e.g. array index)

* One lock per object or per field in one object (e.g. one lock for each account)

* Note: there’s really a continuum between them...
_/

Example: Separate Chaining Hashtable

o

*(Coarse-grained One lock for the entire hashtable

ine-grained Oﬂﬂmr_e_aﬁh_bucket

nich supports more parallelism in insert and find?
nich makeslrehashmg easier? ‘ l
\

nat happens if you want to have aLsi/z?)‘ield?

j@

Tradeoffs

e Coarse-Grained Locking:
. SLimpIer to impIemeD} and avoid race conditions

 Faster/easier to implement operations that access multiple locations (because all
guarded by the same lock)

* Much easier for operations that modify data-structure shape

* Fine-Grained Locking:
— _
* More simultaneous access (performance when coarse grained would lead to

unnecessary blocking)
e Can make multi-location operations more difficult: say, rotations in an AVL tree

* Guidance; Start with coarse-grained,\ make finer only as necessary to
improve performance

Similar But Separate Issue: Critical Section
Granularity

e Coarse-grained —
* For every method that needs a lock, put the entife method body in a loc
* Fine-grained
* Keep the lock only for the sections of code where it’s necessary
* Guidance:
* Try to structure code so that like 1/O) can be done

expensive operations (
gutside of your critical section | —

* E.g., if you're trying to print all the values in a tree, maybe copy items into an

array inside your critical section, then print thearray’s contents outsmlje.
L

LAto micii/

* Atomic operation] one that should be thought of as a single step

—

* Some sequences of operations should behave as if they nit

* Between two operations you may need to avoid exposing an intermediate
state T

* Usually ADT pperations should be_atomic

* You don’t want another thread trying to do an insert while another thread is rotating the
AVL tree

* Guidance: Think first in terms of what operations need to be atomic
F_/

* Design c@ical sections and locking granularity based on these decisions
B

Use Pre-Tested Code

* Guidance: Whenever possible, use bui{tﬂ'n libraries!

e Other peoplg have already invested tons of effort into making things
both efficient and correct, use their work when you can!

» Especially true for concurrent data structures
* Use w data structures when available

* E.g.Java as@oncurrent%

Deadlock

y

* Occurs when wor more threads are[mutually blocking

—

* T1is blocked by T2, which is blocked by T3, ...

\

T e A cycle of blocking

—

T

S

each othe
,Inis bloc<eﬁ“6vﬂ“lJ

\

" T

/

Bank Account

class BankAccount {
synchronized void withdraw(int amt) {...}
synchronized void deposit(int amt) {...}
__s,\synchronized voﬁlﬁrans@int amt, BankAccount a) {
>, this.withdraw(amt);
a.deposit(amt); & B

Expected Behavior:

Th e De a d | OC k Thread 2 items from a stack are popped in

LIFO order

x.transferTo(1,y);

Thread 2:

y.transferTo(1,x);

/c transferTo is synchronized acquire lock for account_y b/c transferTo is synchronized
~acquire lock for account y|b/c deposit is synchronized acquire lock for account x b/c depasit is synchronized
Eele‘aré lock for account y after depost release lock for account x after deposit

retease lock for account x at end of transferTo release lock for account y at end of transferTo

/

Expected Behavior:

Thread 2 it f tack di
The DealeCk LIFrCe):zj)rdelrems rom a stack are popped in

Thread 1: Thread 2:
x.transferTo(1,y); y.trzir)gfe’r'[g(_l,x) ;

— ==

(acquire lock for accour/t(?(tb\c transferTo is sym_) '

S cquire lock for accoun{7c transferTo is syn@
acquire lock for accoun@c om synchronized
A _acquire lock for accom{]@ynchromzed

release lock for account y after depost

[

release lock for account x after deposit
release lock for account x at end of transferTo
release lock for account y at end of transferTo

Resolving Deadlocks

— /
* Deadlocks occur when there are_multiple locks hecessary to complete a
ask and(different em in a different order

threads may obtair
*|Option 1 A \)

* Have a coarser lock granularity 7\
* E.g. gne lock for ALL bank accounts—
ZOption 2:)
* Have a finer critical section so that only one lock is needed at a time
* E.g. instead of a synchronized transferTo, have the withdraw and deposit steps locked
separately (| —_ —
* Option 3:

* Force the threads to always acquire the locks in the same order

« E.g. make transferTo acquire both locks before doing either the withdraw or deposit,
make sure both threads agree on the order to aquire

Option 1: Coarser Locking

—>
static final Object BANK = new Object();

class BankAccount {

synchronized void withdraw(int amt) {...}

synchronized void deposit(int amt) {...} Q/ _5
voiddransferTo(int amt, BankAccount a) {

synchronized(BANK){
is.withdraw(amfj;
a.deposit(amt);
}

Option 2: Finer Critical Section

class BankAccount {

synchronized void withdraw(int amt) {...}
synchronized void deposit(int amt) {...}
%ansferTo(int amt, BankAccount a) {
synchronized(this){
this.withdraw(aml

@hronm T

a.deposit(amt);

)

Option 3: First Get All Locks In A Fixed Order

class BankAccount {

synchronized void withdraw(int amt) {...}
synchronized void deposit(int amt) {...}
void'transferTo(jint amt, BankAccount a) {

if/:(thisjacc um){
synchronized(this){

synchronize

ithdraw(amt);
a.deposit(amt);

138
else {
isswithdraw(amt);
a.deposit(amt);
138

Depth-First Search SHS /@
L \/ N>

Depth-First Search

* Input: anode s

* Behavior: Start with node s, visit one neighbor of s, then all nodes
reachable from that neighbor of s, then another neighbor of s,...

* Output:
e Does the graph have a cycle? 1 5
« A topological sort of the graph.) ONE
o/
4
€

DFS (non-recursive) voiddfsigraph, s)

found = new Stack();

o ® found.pop(s);\
o mark s as “visited”;
@) a3 While (!found.isEmpty()){
O current = found.pop();
® for (v : neighbors(current)){
® @) if (! v marked “visited”){
mark v as “visited”;
found.push(v);
Running time: O(|V| + |E|) } }
}

27

DFS Recursively (more common)

void dfs(graph, curr){
mark curr as “visited”;
for (v : neighbors(current)){

if (! v marked “visited”){
dfs(graph, v); C)

}
! O
mark curr as “done”;

Using DFS
* Consider the “visited times” and “done times”

* Edges can be categorized: Visited : 1 Visited : 2

* Tree Edge pone: 8 DONE: 7 \isited : 3
* (a, b) was followed when pushing Visited: 0 Done: 6
* (a,b) when b was unvisited when we were at a Done: 15
* Back Edge
* (a,b) goes to an “ancestor”
* a and b visited but not done when we saw (a, b)
* tyisitea(h) < tyisitea(@) < taone(@) < tgone(b) Visited : 9
* Forward Edge Done: 14
* (a,b) goes to a “descendent”
* b was visited and done between when a was visited and done Done: 12 Done: 5

¢ tvisited (a) < tvisited (b) < tdone (b) < tdone (a)

Visited : 4

(a, b) goes to a node that doesn’t connect to a
b was seen and done before a was ever visited

¢ tdone(b) < lyisited (a) 29

ldea: Look for a back edge!

Cycle Detection

boolean hasCycle(graph, curr){
mark curr as “visited”;
cycleFound = false;
for (v : neighbors(current)){
@ @ if (v marked “visited” && ! v marked “done”){

cycleFound=true;
}
o e if (! v marked “visited” && IcycleFound){
(3] cycleFound = hasCycle(graph, v);
O @ }
}
mark curr as “done”;
return cycleFound;

} 30

Topological Sort

* A Topological Sort of a directed acyclic graph G = (V,E) is a
permutation of V such that if (u, v) € E then u is before v in the
permutation

0000 -G 0G0

DFS Recursively

void dfs(graph, curr){
mark curr as “visited”;
for (v : neighbors(current)){
if (! v marked “visited”){
dfs(graph, v);
}
}

mark curr as “done”;

DFS: Topological sort

def dfs(graph, s):
seen = [False, False, False, ...] # length matches |V|
done = [False, False, False, ...] # length matches |V|
dfs_rec(graph, s, seen, done)

def dfs_rec(graph, curr, seen, done):
mark curr as seen
for vin neighbors(current):
if v not seen:
dfs_rec(graph, v, seen, done)
mark curr as done

ldea: List in reverse
order by finish time

33

DFS Recursively

void dfs(graph, curr){
mark curr as “visited”;
for (v : neighbors(current)){
if (! v marked “visited”){
dfs(graph, v);
}
}

mark curr as “done”;

ldea: List in reverse
order by finish time

34

DFS: Topological sort

List topSort(graph){
List<Nodes> finished = new List<>();
for (Node v : graph.vertices){
if (v.visited){
finishTime(graph, v, finished);
}
}

finished.reverse();
return finished;

}

void finishTime(graph, curr, finished){
curr.visited = true;
for (Node v : curr.neighbors){
if (Iv.visited){
finishTime(graph, v, finished);
}

}
finished.add(curr)

finished:

ldea: List in reverse
order by finish time

	Slide 1: CSE 332 Autumn 2023 Lecture 26: Wisdom and Deadlock
	Slide 2: Back Account Using Synchronize (Final)
	Slide 3: How to fix this?
	Slide 4: How to fix this?
	Slide 5: Parallel Code Conventional Wisdom
	Slide 6: Memory Categories
	Slide 7: Thread Local Memory
	Slide 8: Immutable Objects
	Slide 9: Shared and Mutable Objects
	Slide 10: Consistent Locking
	Slide 11: Lock Granularity
	Slide 12: Example: Separate Chaining Hashtable
	Slide 13: Tradeoffs
	Slide 14: Similar But Separate Issue: Critical Section Granularity
	Slide 15: Atomicity
	Slide 16: Use Pre-Tested Code
	Slide 17: Deadlock
	Slide 18: Bank Account
	Slide 19: The Deadlock
	Slide 20: The Deadlock
	Slide 21: Resolving Deadlocks
	Slide 22: Option 1: Coarser Locking
	Slide 23: Option 2: Finer Critical Section
	Slide 24: Option 3: First Get All Locks In A Fixed Order
	Slide 25: Depth-First Search
	Slide 26: Depth-First Search
	Slide 27: DFS (non-recursive)
	Slide 28: DFS Recursively (more common)
	Slide 29: Using DFS
	Slide 30: Cycle Detection
	Slide 31: Topological Sort
	Slide 32: DFS Recursively
	Slide 33: DFS: Topological sort
	Slide 34: DFS Recursively
	Slide 35: DFS: Topological sort

