CSE 332 Autumn 2023
Lecture 25: Race Conditions

Nathan Brunelle
http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Bank Account Example

* The following code implements a bank account object correctly for a sequential situation
* Assume the initial balance is 150

What Happens here?
class BankAccount {

private int balance = 0; gﬁﬂjﬁxﬁg’)
int getBalance() { return balance; }
void setBalance(int x) { balance = x; }
void withdraw(int amount) {

int b = getBalance();

if (amount > b)

throw new WithdrawToolargeException();

setBalance(b —amount); }

// other operations like deposit, etc.

A “Bad” Interleaving

e Assume the initial balance is 150

Thread 1:

\

withdraw(100);

e

Thread 2:
\

withdraw(75);

—

int b = getBalance();

if (@amount > b)

throw new Exception();
setBalance(b — amount);

R

int b = getBalance();
if (amount > b)
throw new Exception();

etBalance(b — amount);

What we want —Mal Echusan

* While one thread is v&hdrawing from the account, we want to
exclude all other threads from also withdrawing

e Called mutual exclusion:

* One thread using a resource (here: a bank account) means another thread
must wait

* We call the area of code that we want to have mutual exclusion (only one

thread can be there at a time) acritical section,

* The programmer must implement critical sections!
* |t requires programming language primitives to do correctly

Solution

 We need a construct from Java to do this
* One Solution — A Mutual Exclusion Lock (called a Mutex or Lock)

Q_/—

 We define a Lock to be a ADT with operations:
°* New:
* make a new lock, initially “not held”
* Acquire:
* If lock s not held, mark it as ”h&ld”J

* These two steps always done together in a way that cannot be interrupted!
* Iflockis held, pais_e_until it is marked as “not held”
* Release:
e Mark the lock as “not held”

e-entrant Lock Details

* A re-entrant lock (a.k.a. recursive lock)

* “Remembers”
* the thread (if any) that currently holds it
* acount of ”layers’/ that the thread holds it

* When the lock goes from not-held to held, the countis setto O

* |f (code running in) the current holder calls acquire:
e it does not block
e itincrements the count

* On release:
e if the countis >0, the count is decremented
e if the Eount is 0, the lock becomes not-held

—_— e —————

Java’s Re-entract Lock Class
A

e java.util.concurrent.locks.ReentrantLock
ONnCurrt K(

* Has methods lock() and nlc_)’cik

() &\OJ
* Important to guarantee that lock is always released!!!
* Recommend something like this:

How this looks in Java

java.util.concurrent.locks.ReentrantLock;
class BankAccount {
private int balance = 0;
private ReentrantLock Ick = new ReentrantLock();
int setBalance(int x) {

try{

gk.lock();

balance = x; }
finally{ Ik.unlock{J; }}

void withdraw(int amount) {

try{

IKTock();
int b = getBalance();
if (@amount > b)

throw new WithdrawToo

geException();
—amount); }
finally { Ik.unlock(); } }}

JavaLSynchronized KeywordJ

. @tactic sugar for re-etrant locks
* You can usethe synchronized statement asé alternative to declaring a

ReentrantLock d@
o Nntax: synchronized{/* expression returning an Object */¥{statements}

* Any Object can seF\e as a “lock”
* Primitive types (e.g. int) cannot serve as a lock
S——

'Wand blocks if necessary
* Once you get past the “{“, you have the lock

* Released the lock when you pass ¢}’

* Even in the cases of returning, exceptions, anything!
* Impossible to forget to release the lock

Back Account Using Synchronize (Attempt 1)

class BankAccount {
private int balance = 0; Q/

private Object Jk = new Object(); Z
int getBaIancegf{ L—’\J
- @onized (Ik) { return balance; }
}]
void setBalance(int x) {
- synchronized (lk) { balance = x; }
}
void withdraw(int amount) {
synchronized (lk) {
int b = getBalance();
if (amount > b)
throw new Exception();
setBalance(b — amount); } } // deposit would also use synchronized(lk)

Back Account Using Synchronize (Attempt 2)

class BankAccount {

private int balance = 0;
int getBalance() {

Since we have one lock per account regardless
of operation, it’s more intuitive to use the
account object itself as the lock!

synchronize o‘@ return balance;
} —_— X

void setBalance(int x) {

synchronized (this) { balance = x; }
}
void withdraw(int amount) {

synchronized (thi
it b = getBalance();
if (amount > b)
throw new Exception();
ce(b —amount); }} // deposit would also use synchronized(lk)

More Syntactic Sugar!

——

e Using the object itself as a lock is common enough that Java has
convenient syntax for that as well!

* Declaring a method as “synchronized” puts its body into a
synchronized block with “this” as the lock

Back Account Using Synchronize (Final)

class BankAccount {
private int balance = 0;
synchronized int getBalance() { return balance; }
synchronized void setBalance(int x) { balance = x; }
synchronized void withdraw(int amount) {
int b="getBalance();
if (@amount > b)
throw new WithdrawToolargeException();
setBalance(b — amount); }
// other operations like deposit (which would use synchronized)

-

Race Condition

* Occurs when the computation @depends on scheduling (how
threads are interleaved) -
* We, as programmers can’t influence scheduling of threads
* We need to write programs that work independent of scheduling

e Two Types: Data Races and Bad Interleavings
Yp [od Races g 6/

* Data Race:
 When there is the potential for two threads to be writing a variable in parallel

 When there is the potential for one thread to be reading a variable while another writes
to it —_— ~

* Bad Interleaving: 4l

* A race condition other than a data race
e Usually it looks like exposing a “bad” intermediate state

—

Example:éhared Stack (no problems so far)
class Stack { -
private E[] array = (E[])new Object[SIZE];
private int ind/e>_(_= -1;
an isEmpty() {
return index==-1;

synchronized bo

}

ynchronized void push(E val) {
Windex@
}

Critical sections of this code?

synchranized E pop() {

if(iIsEmpty())
throw new StackEmptyException();
n array[index--];

I8

Race andition, but no Data Race

class Stack

private E[\arra

{

private in-1; s

sync
sync

nc
E pe

nronized void push(E val) { ...
nronized E pop() {..

ek(){
pop();
push ans);

return ans

nronized boolean isEmpty() { ...

}

}

(E[])new Object[SIZE];

Critical sections of this code?

7/

Race Condition, including aPata RaciJ

class Stack {

private E[] array = (E[])new Object[SIZE];

private int index = -1;

synchronized boolean isEmpty() { ... }

synchronized void push(E val) { ...} <

synchronized E pop() { ... }

E peek(){ W

~ System.out.printIn(index);

Eans=pop(); —
push(ans);
return ans;

_—S 2 Expected Behavjor

Peek and isEmpty e 2shouf o e an sty sy

> N
Thread 1: —Ahread 7.

Expected Behavior:

Thread 2 items from a stack are popped in
Peek and Push fhread 2§

Thread 1: hread 2:

= pesks Gl
ystern.out.printin(pop()); \

System.out.println(pop());4(

_E ans = pop(); _push(x);

2
g push(ans); <~ ' push(y);
return ans; System.out.printin(pop()); A<

System.out.printin(pop()); N
y X

X X

N[N

Expected Behavior:

Thread 2 items from a stack are popped in
Peek and Pop

Thread 1: Thread 2:

How to fix this?

Make a bigger critical section

class Stack { L

private E[] array = (E[])new Object[SIZE];
private int index = -1;

synchronized boolean isEmpty() { ... }
synchronized void push(E val) { ... }
synchronized E pop() { ... }

E peek
E ans = pop();

return ans;

—

How to fix this?

class Stack

private E[] array = (E[])new Object[SIZE];

{

private int index = -1;

Sync
sync
sync
SYyNc

nronized boolean isEmpty() { ... }
hronized void push(E val) { ... }
hronized E pop() { ... }

nronized E peek(){
E ans = pop();
push(ans);
return ans;

Make a bigger critical section

Did this fix it?

class Stack

{

private E[] array =

private int index = -1;

sync
sync

hronized boolean isEmpty() { ...
Nronized void push(E val) { ...

Sync

| Epeek()

}

return arra
(a\ yll

nronized E pop() { ...

@]

}

(E[])new Object[SIZE];

}

No! Now it has a data race!

Parallel Code Conventional Wisdom

Wategonesj

| memory must fit one of three categories:

1. /Thread Local; Each thread has its own copy

2. (Shared and mmutablei There is just one copy, but nothing will ever
write to it

3. Eﬁred and MutablegThere IS just one copy, it may change

* Requires Synchronization!
—

Thread Local Memory

* Whenever possible, avoid sharing resources

* Dodges all race conditions, since no other threads can touch it!
* No synchronization necessary! (Remember Ahmdal’s law)

* Use whenever threads do not need to communicate using the
resource

* E.g., each thread should have its on Random object

* In most cases, most objects should be in this category

Immutable Objects

* Whenever possible, avoid changing objects
 Make new objects instead

* Parallel reads are not data races
* |f an object is never written to, no synchronization necessary!

* Many programmers over-use mutation, minimize it

Shared and Mutable Objects

* For everything else, use locks

* Avoid all data races
* Every read and write should be projected with a lock, even if it “seems safe”
* Almost every Java/C program with a data race is wrong

* Even without data races, it still may be incorrect
* Watch for bad interleavings as well!

Consistent Locking

* For each location needing synchronization, have a lock that is always
held when reading or writing the location

* The same lock can (and often should) “guard” multiple fields/objects

e Clearly document what each lock guards!
* In Java, the lock should usually be the object itself (i.e. “this”)

* Have a mapping between memory locations and lock objects and
stick to it!

o *5° e

Lock Granularity

e Coarse Grained: Fewer locks guarding more things each
* One lock for an entire data structure
* One lock shared by multiple objects (e.g. one lock for all bank accounts)

* Fine Grained: More locks guarding fewer things each
* One lock per data structure location (e.g. array index)
* One lock per object or per field in one object (e.g. one lock for each account)

* Note: there’s really a continuum between them...

Example: Separate Chaining Hashtable

e Coarse-grained: One lock for the entire hashtable

* Fine-grained: One lock for each bucket

* Which supports more parallelism in insert and find?
* Which makes rehashing easier?

 What happens if you want to have a size field?

Tradeoffs

e Coarse-Grained Locking:
* Simpler to implement and avoid race conditions

 Faster/easier to implement operations that access multiple locations (because all
guarded by the same lock)

* Much easier for operations that modify data-structure shape
* Fine-Grained Locking:

* More simultaneous access (performance when coarse grained would lead to
unnecessary blocking)

e Can make multi-location operations more difficult: say, rotations in an AVL tree

* Guideline:
 Start with coarse-grained, make finer only as necessary to improve performance

Similar But Separate Issue: Critical Section
Granularity

e Coarse-grained

* For every method that needs a lock, put the entire method body in a lock
* Fine-grained

* Keep the lock only for the sections of code where it’s necessary

e Guideline:

* Try to structure code so that expensive operations (like I/0) can be done
outside of your critical section

* E.g., if you're trying to print all the values in a tree, maybe copy items into an
array inside your critical section, then print the array’s contents outside.

Atomicity

e Atomic: indivisible
* Atomic operation: one that should be thought of as a single step

* Some sequences of operations should behave as if they are one unit

* Between two operations you may need to avoid exposing an intermediate
state

e Usually ADT operations should be atomic

* You don’t want another thread trying to do an insert while another thread is rotating the
AVL tree

* Think first in terms of what operations need to be atomic
* Design critical sections and locking granularity based on these decisions

Use Pre-Tested Code

* Whenever possible, use built-in libraries!

* Other people have already invested tons of effort into making things
both efficient and correct, use their work when you can!
» Especially true for concurrent data structures

 Use thread-safe data structures when available
e E.g.Java as ConcurrentHashMap

Deadlock

* Occurs when two or more threads are mutually blocking each other

* T1 is blocked by T2, which is blocked by T3, ..., Tn is blocked by T1
* A cycle of blocking

Bank Account

class BankAccount {

synchronized void withdraw(int amt) {...}

synchronized void deposit(int amt) {...}

synchronized void transferTo(int amt, BankAccount a) {
this.withdraw(amt);
a.deposit(amt);

The Deadlock

Thread 1:

x.transferTo(1,y);

Expected Behavior:
Thread 2 items from a stack are popped in
LIFO order

Thread 2:

y.transferTo(1,x);

acquire lock for account x b/c transferTo is synchronized
acquire lock for account y b/c deposit is synchronized
release lock for account y after depost

release lock for account x at end of transferTo

acquire lock for account y b/c transferTo is synchronized
acquire lock for account x b/c deposit is synchronized
release lock for account x after deposit

release lock for account y at end of transferTo

The Deadlock

Thread 1:

x.transferTo(1,y);

Expected Behavior:
Thread 2 items from a stack are popped in
LIFO order

Thread 2:

y.transferTo(1,x);

acquire lock for account x b/c transferTo is synchronized
acquire lock for account y b/c deposit is synchronized
release lock for account y after depost

release lock for account x at end of transferTo

acquire lock for account y b/c transferTo is synchronized
acquire lock for account x b/c deposit is synchronized
release lock for account x after deposit

release lock for account y at end of transferTo

Resolving Deadlocks

* Deadlocks occur when there are multiple locks necessary to complete a
task and different threads may obtain them in a different order

* Option 1:
* Have a coarser lock granularity
* E.g. one lock for ALL bank accounts

* Option 2:
* Have a finer critical section so that only one lock is needed at a time
* E.g. instead of a synchronized transferTo, have the withdraw and deposit steps locked
separately
* Option 3:
* Force the threads to always acquire the locks in the same order

* E.g. make transferTo acquire both locks before doing either the withdraw or deposit,
make sure both threads agree on the order to aquire

Option 1: Coarser Locking

static final Object BANK = new Object();
class BankAccount {

synchronized void withdraw(int amt) {...}
synchronized void deposit(int amt) {...}
void transferTo(int amt, BankAccount a) {
synchronized(BANK){
this.withdraw(amt);
a.deposit(amt);

Option 2: Finer Critical Section

class BankAccount {

synchronized void withdraw(int amt) {...}
synchronized void deposit(int amt) {...}
void transferTo(int amt, BankAccount a) {
synchronized(this){
this.withdraw(amt);
}
synchronized(a){
a.deposit(amt);

)

Option 3: First Get All Locks In A Fixed Order

class BankAccount {

synchronized void withdraw(int amt) {...}
synchronized void deposit(int amt) {...}
void transferTo(int amt, BankAccount a) {
if (this.acctNum < a.acctNum){
synchronized(this){
synchronized(a){
this.withdraw(amt);
a.deposit(amt);

P
else {
synchronized(a){
synchronized(this){
this.withdraw(amt);
a.deposit(amt);
b

	Slide 1: CSE 332 Autumn 2023 Lecture 25: Race Conditions
	Slide 2: Bank Account Example
	Slide 3: A “Bad” Interleaving
	Slide 4: What we want – Mutual Exclusion
	Slide 5: Solution
	Slide 6: Re-entrant Lock Details
	Slide 7: Java’s Re-entract Lock Class
	Slide 8: How this looks in Java
	Slide 9: Java Synchronized Keyword
	Slide 10: Back Account Using Synchronize (Attempt 1)
	Slide 11: Back Account Using Synchronize (Attempt 2)
	Slide 12: More Syntactic Sugar!
	Slide 13: Back Account Using Synchronize (Final)
	Slide 14: Race Condition
	Slide 15: Example: Shared Stack (no problems so far)
	Slide 16: Race Condition, but no Data Race
	Slide 17: Race Condition, including a Data Race
	Slide 18: Peek and isEmpty
	Slide 19: Peek and Push
	Slide 20: Peek and Pop
	Slide 21: How to fix this?
	Slide 22: How to fix this?
	Slide 23: Did this fix it?
	Slide 24: Parallel Code Conventional Wisdom
	Slide 25: Memory Categories
	Slide 26: Thread Local Memory
	Slide 27: Immutable Objects
	Slide 28: Shared and Mutable Objects
	Slide 29: Consistent Locking
	Slide 30: Lock Granularity
	Slide 31: Example: Separate Chaining Hashtable
	Slide 32: Tradeoffs
	Slide 33: Similar But Separate Issue: Critical Section Granularity
	Slide 34: Atomicity
	Slide 35: Use Pre-Tested Code
	Slide 36: Deadlock
	Slide 37: Bank Account
	Slide 38: The Deadlock
	Slide 39: The Deadlock
	Slide 40: Resolving Deadlocks
	Slide 41: Option 1: Coarser Locking
	Slide 42: Option 2: Finer Critical Section
	Slide 43: Option 3: First Get All Locks In A Fixed Order

