CSE 332 Autumn 2023
Lecture 24: Concurrency

Nathan Brunelle
http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Reasons to use threads (beyond algorithms)

* Code Responsiveness:

* While doing an expensive computation, you don’t what yourw
freeze

* Processor Utilization:

* |f one thread is waiting on a deep-hierarchy memory access you can still use
that processor time

* Failure Isolation:
* If ohe portion of your code fails, it will only crash that one portion.

Memory Sharing With ForkJoin s

/

* Idea ofﬂb/rlg% .l

. LR,educe span.by having many parallel tasks
* Each task is responsible for its own portion of the input/output

* |f one task needs another’s result, use join() to ensure it uses the final answer
— o - —~—

* This does not help when:

 Memory accessed by threads is overlapping or unpredictable
L] L r L]
* Threads are doing indepen tasky using same resources (rather than
/_J

implementing the same algorithm)

Example: Shared Queue

J Imagine two threads are both using the

EHQUEUE(X){ same linked list based queue.
/] it (%ik —=n){ What could go wrong?
\ back= new Node(x);

front = back;]

} L /\]

else { T — -
back.next = new Node(x);
back = back.next;

} 0 I

Concurrent ProgrammingJ

!

* Concurrency:

* Correctly and efficiently managing access to shared resources across multiple
possibly-simultaneous tasks

* Requires;synchronization to avoid jncorrect simultaneous access)
e Use som other tasks from using a resource when another
modifies it or makes decisions based on its state
* That blocking task will free up the resource when it’s done
* Warning:

* Because we have no control over when threads are sch/edulﬂby the OS, even
correct implementations are highly non-deterministic

* Errors are hard to reproduce, which complicates debugging

\Bank Account Example S e botnrr,),

* The following code implements a bank account object correctly for a synchrghized situation
* Assume the initial balance iszl/S_Q — /7 \

What Happens here?

—~ .
private int balance = 0; — x:tgjgxﬁg?)
int W() { return balance; }

void W(int x) { balance = x; }

void withdraw(int amount) {

2‘ —intb = getBalance();

if (amount > b)
— - . H
throw new yvlthdrawTooLargeExceptlon();J

setBalance(b —amount); }
// othe ions like deposit, etc.
\

class BankAccount {

Bank Account Example - Parallel

e Assume the initial balance is 150

class BankAccount { M\\

private int balance = 0;
int getBalance() { return balance; } B,
void setBalance(int x) { balance = x; }
void withdraw(int amount) { Thread 2:
int b = getBalance(); ==
if (amount > b)
throw new WithdrawToolargeException();
setBalance(b — amount); }
// other operations like deposit, etc.

withdraw(75);

Llnterleaving/

7

* Due to Eif\/eilign_g, a thread can be interrupted at any time
* Between any two lines of code
* Within a single line of code
* The sequence that operations occur across two threads is called an
interleaving

* Without doing anything else, we have no control over how different
threads might be interleaved

A “Good” Interleaving

e Assume the initial balance is 150

withdraw(100);

—_——

withdraw(75);

int b = getBalance();
if (@amount > b)

throw new Exception();
setBalance(b — amount);

int b = getBalance();
if (amount > b)

throw new Exception();
setBalance(b — amount);

A “Bad” Interleaving

e Assume the initial balance is 150

Thread 1: Thread 2:

withdraw(100); withdraw(75);

/\

Hnt b = getBalance(); ,
C — — int b = getBalance(); | 6 O
P — [J if (amount > b)

throw new Exception();
setBalance(b — amount);
if((@moupt > b)

~————
throw new Exception(); ’7 é_

setBaIanceL(B:w;

Another result?

e Assume the initial balance is 150

Thread 1:

withdraw(100);

Thread 2:

withdraw(75);

int b = getBalance(); / va

if (@amount > b)

T

5w

w Exception();
setBalance(b — amount);

int b = getBalance(); /

O

if (@amount > b)

setBalance(b — amount);

——

)

-

throw new Exception();

A Bad Fix

e Assume the initial balance is 150

class BankAccount {
private int balance = 0;
int getBalance() { return balance; }
void setBalance(int x) { balance = x; }
void withdraw(int amount) {

if (amount > getBalance())
~ throw new WithdrawToolargeException(); <

setBalance(getBalance() —amount); }

// other operations like deposit, etc.

A still “Bad” Interleaving

e Assume the initial balance is 150

Thread 1: Thread 2:

withdraw(100); withdraw(75);

(i s
- —— if (amount > getBalance())
| if (amount > getBaIav)\ce\()) — T

) throw new Exception();
se alance()

DA

(throw new Exception();
7—(/ setBalance(getBalance() — amount);
setBalance(— amount); / S >
/

b

What we want —LI_/I/LituaI w

* While_one thread is withdrawing from the account, we want to
exclude all other threads from also withdrawing

— - e —

e Called mutual exclusion:

* One thread using a resource (here: a bank account) means another thread
must wait

* We call the area of code that we want to have mutual exclusion (only one

thread can be there at a time) a _@;al-seeuen—

* The programmer must implement critical sections!
* |t requires programming language primitives to do correctly

A Bad attempt at Mutual Exclusion

class BankAccount {
private int balance = 0;
private Boolean busy = false;
int getBalance() { return balance; }
void setBalance(int x) { balance = x; }
void withdraw(int amount) {

while (busy) { /* wait until not busy */}
busy =%e;‘l

int b = getBalance();
if (amount > b)
throw new WithdrawToolargeException();
setBalance(b — amount);
R busy =w
// other operations like deposit, etc.

A still “Bad” Interleaving

e Assume the initial balance is 150

Thread 1: Thread 2:
withdraw(100); Vwi_t_hdﬁav‘;(?’S),
7 (_ i * wait until not busy */ }' while (busy) { /* wait until not busy */ }
= frue;

busy = true;
L/—\\ int b = getBalance();
int b = getBalance();
if (amount > b)

throw new Exception();
setBalance(b — amount);
busy = false;

if (amount > b)

throw new Exception();
setBalance(b — amount);
busy = false;

Solution

* We need a construct from Java to do this

* One Solution — A @al Exclusion Lock (called a Mutex or Lock)
* We define wto be a ADT with operations:

* New:

~——
* make a new lock, initially “not held”

* |f lock is not held, mark it as “held”
_Nelc

—_

* These two steps always done together in a way that cannot be interrupted!

. _/ . . .
* Iflockis held, pause until it is marked as “not held” —

* Release:
e Mark the lock as “not held”

Almost Correct Bank Account Example

class BankAccount {
private int balance = 0;
private Lock lgk = new Lock();
int getBalance() { return balance; }
void setBalance(int x) { balance = x; }
void withdraw(int amount) {
lk.acquire S
int b = getBalance();
if @mount>b) (/fJ, [’C/e&
throw new WithdrawToolargeException();
setBalance(b — amount);

Telease();)\ &—

// other operations like deposit, etc.

Questions:
1. What is the critical section?

2. What s the Error?

4

L C

AN

Try...Finally

*\Try Block:
* Body of code that will be run

* Finally Block:

* Always runs once the program exits try block (whether due to a return,

exception, anything!)
/

Correct (but not Java) Bank Account Example

cIass(?a

nkAccount {

privaﬁm{ balance = 0;
private Lock Ick = new Lock();
int getBalance() { return balance; }
void setBalance(int x) { balance = x; }
void withdraw(int amount) {
try{
lk.acquire();
int b = getBalance();
if (@amount > b)

S N

Questions:

1. Should deposit have its own
lock object, or the same one?

2. What about getBalance?

3. What about setBalance?

e e —

throw new WithdrawToolargeException();

etBatance(b — amount); }

finally { Ik.release(); }3
// other operationstike deposit, etc.

A still “Bad” Interleaving

e Assume the initial balance is 150

Thread 1: Thread 2:

What’s wrong here...

class BankAccount {
private int balance = 0;

private Lock Ick = new Lock();
int setBaIance(int[:TI’["\J
try{ '

/
~ balance=Yx;
finally{ H<.r___e/|ease(); }}
void withdraw(int amount) {

-ty

lk.acquire();
| = getBalance();
if (amount > b)

Withdraw calls setBalance!
N\

Withdraw can never finish because in

setBalance the lock will always be held!

throw new WithdrawToolargeException();

setBalance[b — amount); }

finally { Ik.release(); } }} el

ée—entrantALock (Recursive Lock)

e |dea:

* Once a thread has acquired-alack, future calls to acquire on the same lock
will not block progress =~ —

* If the lock used in the previous slide is re-entrant, then it will work!

—

Re-entrant Lock Details

* A re-entrant lock (a.k.a. recursive lock)

* “Remembers”
~+ thethread (if any) that currently holds it

* a count of “layers” that the thread holds it
. Whmheld to held, the countis setto O

* |f (code running in) the current holder calls acquire:
e it does not block
e itincrements the count

* On release:
e if the countis >0, the count is decremented
e if the countis O, the lock becomes not-held

Java’s Re-entract Lock Class

e java.util.concurrent.locks.ReentrantLock
/

* Has methods lock()/and unlock()
* Important to guarantee that lock is always released!!!

e Recommend sgmething like this:

myLock.lock();
try { // method body }
finally { myLock.unlock(); }

How this looks in Java

java.util.concurrent.locks.ReentrantLock;
class BankAccount {
private int balance = 0;
private ReentrantLock Ick = new ReentrantLock();
int setBalance(int x) {
try{
Ik.lock();
balance = x; }
finally{ Ik.unlock(); } }
void withdraw(int amount) {
try{
lk.lock();
int b = getBalance();
if (@amount > b)
throw new WithdrawToolLargeException();

setBalance(b — amount); }
finally { Ik.unlock(); } }}

Java Synchronized Keyword

 Syntactic sugar for re-etrant locks

* You can use the synchronized statement as an alternative to declaring a
ReentrantLock

o Syntax; synchronized(/* expression returning an Object */) {statements}

* Any Object can serve as a “lock”
* Primitive types (e.g. int) cannot serve as a lock

e Acquires a lock and blocks if necessary
* Once you get past the “{“, you have the lock

* Released the lock when you pass “}”

* Even in the cases of returning, exceptions, anything!
* Impossible to forget to release the lock

Back Account Using Synchronize (Attempt 1)

class BankAccount {
private int balance = 0;
private Object Ik = new Object();
int getBalance() {
synchronized (lk) { return balance; }
}
void setBalance(int x) {
synchronized (lk) { balance = x; }
}
void withdraw(int amount) {
synchronized (lk) {
int b = getBalance();
if (amount > b)
throw new Exception();
setBalance(b — amount); } } // deposit would also use synchronized(lk)

Back Account Using Synchronize (Attempt 2)

class BankAccount {

private int balance = 0; :

. Since we have one lock per account regardless

int getBalance() { of operation, it’s more intuitive to use the
synchronized (this) { return balance; } account object itself as the lock!

}

void setBalance(int x) {
synchronized (this) { balance = x; }
}
void withdraw(int amount) {
synchronized (this) {
int b = getBalance();
if (amount > b)
throw new Exception();
setBalance(b — amount); } } // deposit would also use synchronized(lk)

More Syntactic Sugar!

e Using the object itself as a lock is common enough that Java has
convenient syntax for that as well!

* Declaring a method as “synchronized” puts its body into a
synchronized block with “this” as the lock

Back Account Using Synchronize (Final)

class BankAccount {
private int balance = 0;
synchronized int getBalance() { return balance; }
synchronized void setBalance(int x) { balance = x; }
synchronized void withdraw(int amount) {
int b = getBalance();
if (@amount > b)
throw new WithdrawToolargeException();
setBalance(b — amount); }
// other operations like deposit (which would use synchronized)

	Slide 1: CSE 332 Autumn 2023 Lecture 24: Concurrency
	Slide 2: Reasons to use threads (beyond algorithms)
	Slide 3: Memory Sharing With ForkJoin
	Slide 4: Example: Shared Queue
	Slide 5: Concurrent Programming
	Slide 6: Bank Account Example
	Slide 7: Bank Account Example - Parallel
	Slide 8: Interleaving
	Slide 9: A “Good” Interleaving
	Slide 10: A “Bad” Interleaving
	Slide 11: Another result?
	Slide 12: A Bad Fix
	Slide 13: A still “Bad” Interleaving
	Slide 14: What we want – Mutual Exclusion
	Slide 15: A Bad attempt at Mutual Exclusion
	Slide 16: A still “Bad” Interleaving
	Slide 17: Solution
	Slide 18: Almost Correct Bank Account Example
	Slide 19: Try…Finally
	Slide 20: Correct (but not Java) Bank Account Example
	Slide 21: A still “Bad” Interleaving
	Slide 22: What’s wrong here…
	Slide 23: Re-entrant Lock (Recursive Lock)
	Slide 24: Re-entrant Lock Details
	Slide 25: Java’s Re-entract Lock Class
	Slide 26: How this looks in Java
	Slide 27: Java Synchronized Keyword
	Slide 28: Back Account Using Synchronize (Attempt 1)
	Slide 29: Back Account Using Synchronize (Attempt 2)
	Slide 30: More Syntactic Sugar!
	Slide 31: Back Account Using Synchronize (Final)

