CSE 332 Autumn 2023
Lecture 21: Dijkstra’s

Nathan Brunelle
http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Breadth-First Search

* Input: anode s

* Behavior: Start with node s, visit all neighbors of s, then all neighbors
of neighbors of s, ...

* Output:

 How long is the shortest path?
* |s the graph connected? Q @

void bfs(graph, s){
BFS found = new Queue();

o ® found.enq:Je.u.e(s)’i
0 mark s as “visited”;

@) a3 While (!found.isEmpty()){
O current = found.dequeue();
O for (v : neighbors(current)){
® @), if (! v marked “visited”){
mark v as “visited”;
found.enqueue(v);

Running time: O(|V| + |E|) }

Shortest Path (unweighted) " Shor:sza:aihégeﬁpgl];te)({);
layer = 0;
found.enqueue(s);
mark s as “visited”;
While (!found.isEmpty()){
current = found.dequeue();
(9] layer = depth of current;
for (v : neighbors(current)){
if (! v marked “visited”){
mark v as “visited”;
depth of v = layer + 1;

ldea: when it’s seen, remember found.enqueue(v);
its “layer” depth! } }

}

return depth of t;

Single-Source Shortest Path

@“Sl%},

Internation
NS 2N

Find the quickest way to get from UVA to each of these other places

Given agraph G = (V,E) and astart node s € V, for each v € V find
the least-weight path from s = v (call this weight § (s, v))

NI T s
(assumption: all edge weights are;ro(ve) ‘

Y0 20,.0.050%

™)

Some “Tricky” Observations Cb/\é\g /

e Shortest path by sum of edge weights does not necessarily use the
fewest edges. 1~ 1
L O~O~O~O=O~a

(A) - (®)
* Negative Edges:

ﬁoday’s algorithm assumes that a path from A to B cannot be longer than
ath from A to B to C.

* Assumption is guaranteed to be true if no edges have negative weights
* If there are negative weight cycles, problem is ill-defined

— — ®

O~T—E O
8 © S 8 Ok

Dealing with Negative Edges (Incorrectly)

* Why doesn’t this work?
» Take the most negative edge and add it’s absolute value to every other edge

i S
L OO~ OO, map L O-O-@-OH0N
—
%)5

Dijkstra’s/ Algorithm

* Input: graph with no negative edge weights, start node s, end node ¢t

* Behavior: Start with node s, repeatedly go to the incomplete node
“nearest” to s, stop when

* Output: /\
e Distance from start to end 10 @ @
2

8
* Distance from start to every node /
9
(3) > 9 0

ﬂ 12@31 N
~———

Dijkstra’s Algorithm

Start: O

ldea: When a node is the closest
End: 8 B —— —

“unknown” node to the start,
we have found its shortest path

Node Done? Node Distance D

0O N o uu B W N L O
m M m M M M M M
cOo N O U0 & W N +» O
§ 8 8 8 8 8§ 8 8 @

[HEN

N

(98]

Dijkstra’s Algorithm

>tart: 0 ldea: When a node is the closest
End: 8 B B
unknown” node to the start,
we have found its shortest path
Node Done? Node Distance
0 T 0 0
1 F 1 10
2 F 2 12
3 F 3 o0 2
4 F 4 o Q
5 F 5 0
6 F 6 00 11
7 F 7 0
8 F 8 o0

10

Dijkstra’s Algorithm

Start: O

End: 8
Node Done? Node Distance
0 T 0 0
1 T 1 10
2 F 2 12
3 F 3 00
4 F 4 18
5 F 5 00
6 F 6 00
7 F 7 00
8 F 8 00

ldea: When a node is the closest
“unknown” node to the start,
we have found its shortest path

[)

Dijkstra’s Algorithm

Start: O

End: 8
Node Done? Node Distance
0 T 0 0
1 T 1 10
2 T 2 12
3 F 3 15
4 F 4 18
5 F 5 13
6 F 6 00
7 F 7 00
8 F 8 00

ldea: When a node is the closest
“unknown” node to the start,
we have found its shortest path

12

Dijkstra’s Algorithm

>tart: 0 ldea: When a node is the closest
End: 8 B B
unknown” node to the start,
we have found its shortest path
Node Done? Node Distance
0 T 0 0
1 T 1 10
2 T 2 12
3 F 3 14 2
4 F 4 18 Q
5 T 5 13
6 F 6 00 11
7 F 7 20
8 F 8 o0

13

Dijkstra’s Algorithm

int dijkstras(graph, start, end){ 7

PQ = new minheap(); Q 9
(3)

PQ.insert(0, start); // priority=0, value=start

start.distance = 0; 17 3
while (IPQ.isEmpty){ @ 3
current = PQ.extractmin();
if (current.known){ continue;} 1 @

current.known = true;
for (neighbor : current.neighbors){

if ('neighbor.known){
new_dist = current.distance + weight(current,neighbor);

if(neighbor.dist != 00){ PQ.insert(new_dist, neighbor);}
else if (new_dist < neighbor. distance){
neighbor. distance = new_dist;
PQ.decreaseKey(new _dist,neighbor); }

}
}

return end.distance;

Dijkstra’s Algorithm: Running Time

* How many total priority queue operations are necessary?
* How many times is each node added to the priority queue?
 How many times might a node’s priority be changed?

* What's the running time of each priority queue operation?

e Overall running time:
* O(|E]log|V])

Dijkstra’s Algorithm: Correctness

* Claim: when a node is removed from the priority queue, we have
found its shortest path g e

* Induction over number of completed nodes

. Base Case: 57@/,/////6

* Inductive Step: g

Dijkstra’s Algorithm: Correctness

e Claim: when a node is removed from the
priority queue, its distance is that of the
shortest path

* Induction over number of completed nodes

* Base Case: Only the start node removed

* |tis indeed O away from itself
nhdeedalt

* If we have correctly found shortest paths for the first
/k nodes, then when we remove node/k + 1/we have
found its shortest path dw

/

Dijkstra’s Algorithm: Correctness

e Suppose a is the next node removed from the
queue. What do we know bout a?

18

Dijkstra’s Algorithm: Correctness

e Suppose a is the next node removed from the queue.

* No othermcomplete node has a shorter path
discovered so far

* Claim: no undiscovered path to a could be shorter

* Consider any other incomplete node b that is 1 edge away
from a complete node

* ais the closest node that is one away from a complete node
e Thus no path that includes b can be a shorter path to a
* Therefore the shortest path to a must use only complete

nodes, and therWund it already!

Dijkstra’s Algorithm: Correctness

e Suppose a is the next node removed from the queue.

* No other node incomplete node has a shorter path
discovered so far

* Claim: no undiscovered path to a could be shorter

e Consider any other incomplete node b that is 1 edge away
from a complete node

* ais the closest node that is one away from a complete node
* No path from b to a can have negative weight
e Thus no path that includes b can be a shorter path to a

* Therefore the shortest path to a must use only complete
nodes, and therefore we have found it already!

Depth-First Search

Depth-First Search

* Input: anode s

* Behavior: Start with node s, visit one neighbor of s, then all nodes
reachable from that neighbor of s, then another neighbor of s,...

* Output:
e Does the graph have a cycle? 1 5
« A topological sort of the graph.) ONE
o/
4
€

DFS (non-recursive)

O)
©
o @ o

3 & -

Running time: O(|V| + |E|)

void dfs(graph, s){

found = new Stack();
found.pop(s);
mark s as “visited”;
While (!found.isEmpty()){
current = found.pop();
for (v : neighbors(current)){
if (! v marked “visited”){
mark v as “visited”;
found.push(v);

23

DFS Recursively (more common)

void dfs(graph, curr){
mark curr as “visited”;
for (v : neighbors(current)){
if (! v marked “visited”){
dfs(graph, v);
} | °

mark curr as “done”;

Using DFS
* Consider the “visited times” and “done times”

* Edges can be categorized: Visited : 1 Visited : 2

* Tree Edge pone: 8 DONE: 7 \isited : 3
* (a, b) was followed when pushing Visited: 0 Done: 6
* (a,b) when b was unvisited when we were at a Done: 15
* Back Edge
* (a,b) goes to an “ancestor”
* a and b visited but not done when we saw (a, b)
* tyisitea(h) < tyisitea(@) < taone(@) < tgone(b) Visited : 9
* Forward Edge Done: 14
* (a,b) goes to a “descendent”
* b was visited and done between when a was visited and done Done: 12 Done: 5

¢ tvisited (a) < tvisited (b) < tdone (b) < tdone (a)

Visited : 4

(a, b) goes to a node that doesn’t connect to a
b was seen and done before a was ever visited

¢ tdone(b) < lyisited (a) 22

ldea: Look for a back edge!

Cycle Detection

boolean hasCycle(graph, curr){
mark curr as “visited”;
cycleFound = false;
for (v : neighbors(current)){
@ @ if (v marked “visited” && ! v marked “done”){

cycleFound=true;
}
o e if (! v marked “visited” && IcycleFound){
(3] cycleFound = hasCycle(graph, v);
O @ }
}
mark curr as “done”;
return cycleFound;

} 26

Topological Sort

* A Topological Sort of a directed acyclic graph G = (V,E) is a
permutation of V such that if (u, v) € E then u is before v in the
permutation

0000 -G 0G0

DFS Recursively

void dfs(graph, curr){
mark curr as “visited”;
for (v : neighbors(current)){
if (! v marked “visited”){
dfs(graph, v);
}
}

mark curr as “done”;

DFS: Topological sort

def dfs(graph, s):
seen = [False, False, False, ...] # length matches |V|
done = [False, False, False, ...] # length matches |V|
dfs_rec(graph, s, seen, done)

def dfs_rec(graph, curr, seen, done):
mark curr as seen
for vin neighbors(current):
if v not seen:
dfs_rec(graph, v, seen, done)
mark curr as done

ldea: List in reverse
order by finish time

29

DFS Recursively

void dfs(graph, curr){
mark curr as “visited”;
for (v : neighbors(current)){
if (! v marked “visited”){
dfs(graph, v);
}
}

mark curr as “done”;

ldea: List in reverse
order by finish time

30

DFS: Topological sort

List topSort(graph){
List<Nodes> finished = new List<>();
for (Node v : graph.vertices){
if (v.visited){
finishTime(graph, v, finished);
}
}

finished.reverse();
return finished;

}

void finishTime(graph, curr, finished){
curr.visited = true;
for (Node v : curr.neighbors){
if (Iv.visited){
finishTime(graph, v, finished);
}

}
finished.add(curr)

finished:

ldea: List in reverse
order by finish time

	Slide 1: CSE 332 Autumn 2023 Lecture 21: Dijkstra’s
	Slide 2: Breadth-First Search
	Slide 3: BFS
	Slide 4: Shortest Path (unweighted)
	Slide 5: Single-Source Shortest Path
	Slide 6: Some “Tricky” Observations
	Slide 7: Dealing with Negative Edges (Incorrectly)
	Slide 8: Dijkstra’s Algorithm
	Slide 9: Dijkstra’s Algorithm
	Slide 10: Dijkstra’s Algorithm
	Slide 11: Dijkstra’s Algorithm
	Slide 12: Dijkstra’s Algorithm
	Slide 13: Dijkstra’s Algorithm
	Slide 14: Dijkstra’s Algorithm
	Slide 15: Dijkstra’s Algorithm: Running Time
	Slide 16: Dijkstra’s Algorithm: Correctness
	Slide 17: Dijkstra’s Algorithm: Correctness
	Slide 18: Dijkstra’s Algorithm: Correctness
	Slide 19: Dijkstra’s Algorithm: Correctness
	Slide 20: Dijkstra’s Algorithm: Correctness
	Slide 21: Depth-First Search
	Slide 22: Depth-First Search
	Slide 23: DFS (non-recursive)
	Slide 24: DFS Recursively (more common)
	Slide 25: Using DFS
	Slide 26: Cycle Detection
	Slide 27: Topological Sort
	Slide 28: DFS Recursively
	Slide 29: DFS: Topological sort
	Slide 30: DFS Recursively
	Slide 31: DFS: Topological sort

