CSE 332 Autumn 2023
Lecture 19: Graphs

Nathan Brunelle
http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

AdJacenc List

Time/Space Tradeoffs /
Space to represent: O(n + m

Add Edge: ©(1) u
Remove Edge (v, w):0(deg(v)) V| =n
Check if Edge (v, w) Exists: ©@(deg(v)) | |E| = m
Get Neighbors (incoming): ©(n + m)
Get Neighbors (outgoing): @(deg(v))

AdJacenc I\/Iatrlx (Welghted)

1
2
3
4
5
Time/Space Tradeoffs
6
Space to represent: ©(n?) .
Add Edge: ©(1)
Remove Edge: ©(1) V| =n .
Check if Edge Exists: ©(1) |E| =m °

Get Neighbors (incoming): ©(n)
Get Neighbors (outgoing): ©(n)

Aside

* Almost always, adjacency lists are the better choice

. M@phs are mis@g most of their edges, so the adjacency list is
much more space efficient and the slower operations don’t end up
being that much slower

Definition: Path

A sequence of nodes (vq, Uy, ..., Uk)
st.V1<i<k-1,(v;v;y,) EE

4

1

Simple Path: Cycle:
A path in which each node A path which starts and
appears at most once ends in the same place

-\

Definition: (Strongly) Connected Grapb

A Graph G = (V, E) s.t. for any pair of nodes
V4, V, € V there is a path from v; to v,

LALJ

Definition: (Strongly) Connected Graph

A Graph G = (V, E) s.t. for any pair of nodes
v, V, € V there is a path from v; to v,

Connected \7 Not (strongly) Connected
7

Definition: Weakly Connected Graph

A Graph G = (V, E) s.t. for any pair of nodes
v, V, € V there is a path from v; to v,

Weakly Connected Not Weakly Connected .

Definition: Complete Graph

A Graph G = (V, E) s.t. for any pair of nodes
V4, V, € IV there is an edge from v to v,

XK X

Complete Complete Complete Directed
Undirected Graph Directed Graph Non-simple Graph

— A N
¢ om0l

1= | 1//
Graph Density, Data Structures, Efficiency

* The maximum number of edges in a graph is O(|V]4):

2
 Directed and simpley |V|(|V| o 1) & (Z//

* Direct and non-simple upllcates) |V|2

* |f the graph is connected, the mlnlmum number of edgesis |[V| — 1 /

« If|E| € @(IVIZ) we say the graph is dense
(_/-_)
 If |E| € O(|V]) we say the graph |s!sparse)

* Becaus |E=|; is not always near to |V|? we do not typically substitute
|V |? for iF in running times, but leave it as a separate variable

Definition: Tree

~————

A Graph G = (V,E) isatree ifitis undirect;L &

cﬂ_E,CtEd, and has no cycles (i.e. is acyclic).
Often one node is identified as the “root”

A Rooted Tree

11

K e i
Breadth-First Search
(—]

* Input: anode s

* Behavior: Start with node s, visit all neighbors of s, then all neighbors
of neighbors of s, ...

* Output:

. {How long is the SMD

* Isthe graph onnected:

Cearly (%

12

void b _f/s(graph@){

W|Ie (found isSEmpty()){

current = found.dequeue)
for (v : nelghb rrent)){
% if (! v marked ”V|S|ted”){
/\@/5(“mark v as “visited”;

found.enqueue(v);

/_

Z Running t|me @KIVI + [E]),

13

. int shortestPath h,s,t
Shortest Path (unweighted) iffjndaz ,ﬂi@ipau;e’({);

L

layer = 0;
ound.erqueue(s);
mark s as “visited”;
While (!found.isEmpty()){
current = found.dequeue();
O _layer = depth of current;
for (v : neighbors(current)){

if (! v marked “visited”){

77 mark v as “visited”;
depth of v = layer + 1;

ldea: when it’s seen, remember found.enqueue(v);
its “layer” depth! } }
| \

return depth of t;
} k/—’j 14

Depth-First Search

Depth-First Search

* Input: anode s

* Behavior: Start with node s, visit one neighbor of S then all nodes
. — . L TT—
reachable from that neighborof s, then another neighbor of s,...

—

* Output:
e Does the graph have a cycle?
* A topological sort of the graph.

DFS non—recursivﬁ) VOiddch(ﬁ;Zpt‘nse)évStack(

— o z@) found.p ”
P - o mark s as S|ted
@ 0 While (!found.lsEmpty()){
(9] current = found.pop();
@ for (v : neighbors(current)){
® @ if (! v marked “visited”){

mark v as “visited”;
found.push(v);

Running time: O(|V| + |E|) }

S }

17

L[Eg Recursively (more common)

void dfs(graph, curr){
mark curr as “visited”;
for (v : neighbors(current)){
if (1v markeT@Ls@”){
dfs(graph, v);

}
} ‘
mark curr as “done”;
} A

18

Using DFS
* Consider the “visited times” and “done times”

* Edges can be categorized: Visited : 1~ Visited : 2
* Tree Edge bone: 8 — Done: T —Visited : 3

4 * (a, b) was followed when pushing Visited: 0 Q
: then b was unvisited when we were at a

oges to an “ancestor”
a and b visited but not done when we saw (a, b)
* tyisitea(0) < tyisitea(@) < tgone(@) < tgone(h) ﬂ\/isited : 9 3\
* Forward Edge Done: 14
— (a,b) goestoa {’descendent:)
e b was visited and done between when a was visited and done Done: 12 Done: 5
¢ tvisited (a) < tvisited (b) < tdone (b) < tdone (a)

l/'/(am_g"oes to a node that doesn’t connect to a
* b was seen and done before a was ever visited

¢ tdone(b) < lyisited (a) 9

ldea: Look for a back edge!

Cycle Detection

booleanbasCycIe(graph, curr){
mark curr as “visited”;
cycleFound = false;
for (v : neighﬁs(ckurrent)){
@) ®) if (v marked “visited” && ! v marked “done”){

cycleFound=true; — = T——
}
o e if (! v marked “visited” && IcycleFound){
(3] cycleFound = hasCycle(graph, v);
O @ }
}
mark curr as “done”;
return cycleFound; <& —

} 20

Internation
NS 2N

Find the quickest way to get from UVA to each of these other places

Given agraph G = (V,E) and astart node s € V, for each v € V find
the least-weight path from s = v (call this weight § (s, v))

(assumption: all edge weights are positive)

21

Dijkstra’s Algorithm

* Input: graph with no negative edge weights, start node s, end node ¢t

* Behavior: Start with node s, repeatedly go to the incomplete node
“nearest” to s, stop when

* Output:
g (D——(3)
e Distance from start to end 10 5
* Distance from start to every node @ / @
9
@ > 9
12 3
@ 1

Dijkstra’s Algorithm

Start: O .
ldea: When a node is the closest
End: 8 . .
undiscovered thing to the start,
we have found its shortest path
Node Done? Node Distance
0 F 0 0
1 i 1 * 1o AD—E—(2) .
2 F 2 00 @
7
3 F 3 = 0O . © : 2
4 F 4 o 2 Q
5 : 5 o0 12 o 3\,
6 F 6 00 11
7 F 7 0 1 @ 7 @
8 F 8 00

23

Dijkstra’s Algorithm

Start: O .
ldea: When a node is the closest
End: 8 . .
undiscovered thing to the start,
we have found its shortest path
Node Done? Node Distance
0 T 0 0
1 F 1 10 1o AD=E—(2) i
2 ; 2 12 , @)
3 F 3 00 9 2
4 F 4 oo (3) ’ J ®
5 F 5 o0 12 o 3\,
6 F 6 00 11
7 F 7 0 1 @ 7 @
8 F 8 00

24

Dijkstra’s Algorithm

Start: O

End: 8
Node Done? Node Distance
0 T 0 0
1 T 1 10
2 F 2 12
3 F 3 00
4 F 4 18
5 F 5 00
6 F 6 00
7 F 7 00
8 F 8 00

Idea: When a node is the closest
undiscovered thing to the start,
we have found its shortest path

25

Dijkstra’s Algorithm

Start: O

End: 8
Node Done? Node Distance
0 T 0 0
1 T 1 10
2 T 2 12
3 F 3 15
4 F 4 18
5 F 5 13
6 F 6 00
7 F 7 00
8 F 8 00

Idea: When a node is the closest
undiscovered thing to the start,
we have found its shortest path

26

Dijkstra’s Algorithm

Start: 0

End: 8
Node Done? Node Distance
0 T 0 0
1 T 1 10
2 T 2 12
3 F 3 14
4 F 4 18
5 T 5 13
6 F 6 00
7 F 7 20
8 F 8 00

Idea: When a node is the closest
undiscovered thing to the start,
we have found its shortest path

27

L)) .
Dijkstra’s Algorithm
int dijkstras(graph, start, end){ @ 8
distances = [0, 0, 0,...]; // one index per node
done = [False,False,False,...]; // one index per node /

PQ = new minheap(); Q
PQ.insert(0, start); // priority=0, value=start

distances[start] = 0O; 12 3
while (IPQ.isEmpty){ @ 3
current = PQ.extractmin(); 1 @

if done[current]{ continue;}
done[current] = true;
for (neighbor : current.neighbors){
if ('done[neighbor]){
new_dist = distances[current]+weight(current,neighbor);
if new_dist < distances[neighbor]{
distances[neighbor] = new_dist;
PQ.decreaseKey(new_dist,neighbor); }

}
}

return distances[end]

Dijkstra’s Algorithm: Running Time

* How many total priority queue operations are necessary?
* How many times is each node added to the priority queue?
 How many times might a node’s priority be changed?

* What's the running time of each priority queue operation?

e Overall running time:
* O(|E]log|V])

Dijkstra’s Algorithm: Correctness

* Claim: when a node is removed from the priority queue, we have
found its shortest path

* Induction over number of completed nodes
* Base Case:
* Inductive Step:

Dijkstra’s Algorithm: Correctness

e Claim: when a node is removed from the
priority queue, its distance is that of the
shortest path

* Induction over number of completed nodes

* Base Case: Only the start node removed
* |tis indeed 0 away from itself

* Inductive Step:

* If we have correctly found shortest paths for the first
k nodes, then when we remove node k + 1 we have
found its shortest path

Dijkstra’s Algorithm: Correctness

e Suppose a is the next node removed from the
queue. What do we know bout a?

32

Dijkstra’s Algorithm: Correctness

e Suppose a is the next node removed from the queue.

* No other incomplete node has a shorter path discovered so
far

* Claim: no undiscovered path to a could be shorter

e Consider any other incomplete node b that is 1 edge away
from a complete node

* ais the closest node that is one away from a complete node
e Thus no path that includes b can be a shorter path to a

* Therefore the shortest path to a must use only complete
nodes, and therefore we have found it already!

Dijkstra’s Algorithm: Correctness

e Suppose a is the next node removed from the queue.

* No other node incomplete node has a shorter path
discovered so far

* Claim: no undiscovered path to a could be shorter

e Consider any other incomplete node b that is 1 edge away
from a complete node

* ais the closest node that is one away from a complete node
* No path from b to a can have negative weight
e Thus no path that includes b can be a shorter path to a

* Therefore the shortest path to a must use only complete
nodes, and therefore we have found it already!

	Slide 1: CSE 332 Autumn 2023 Lecture 19: Graphs
	Slide 2: Adjacency List
	Slide 3: Adjacency Matrix (weighted)
	Slide 4: Aside
	Slide 5: Definition: Path
	Slide 6: Definition: (Strongly) Connected Graph
	Slide 7: Definition: (Strongly) Connected Graph
	Slide 8: Definition: Weakly Connected Graph
	Slide 9: Definition: Complete Graph
	Slide 10: Graph Density, Data Structures, Efficiency
	Slide 11: Definition: Tree
	Slide 12: Breadth-First Search
	Slide 13: BFS
	Slide 14: Shortest Path (unweighted)
	Slide 15: Depth-First Search
	Slide 16: Depth-First Search
	Slide 17: DFS (non-recursive)
	Slide 18: DFS Recursively (more common)
	Slide 19: Using DFS
	Slide 20: Cycle Detection
	Slide 21: Single-Source Shortest Path
	Slide 22: Dijkstra’s Algorithm
	Slide 23: Dijkstra’s Algorithm
	Slide 24: Dijkstra’s Algorithm
	Slide 25: Dijkstra’s Algorithm
	Slide 26: Dijkstra’s Algorithm
	Slide 27: Dijkstra’s Algorithm
	Slide 28: Dijkstra’s Algorithm
	Slide 29: Dijkstra’s Algorithm: Running Time
	Slide 30: Dijkstra’s Algorithm: Correctness
	Slide 31: Dijkstra’s Algorithm: Correctness
	Slide 32: Dijkstra’s Algorithm: Correctness
	Slide 33: Dijkstra’s Algorithm: Correctness
	Slide 34: Dijkstra’s Algorithm: Correctness

