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Quicksort

• Like Mergesort:
• Divide and conquer

• 𝑂(𝑛 log 𝑛) run time (kind of…)

• Unlike Mergesort:
• Divide step is the “hard” part

• Typically faster than Mergesort
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Quicksort

Idea: pick a pivot element, recursively sort two sublists around that 
element

• Divide: select pivot element 𝑝, Partition(𝑝)

• Conquer: recursively sort left and right sublists

• Combine: Nothing!
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Partition (Divide step)

Given: a list, a pivot 𝑝
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8 5 7 3 12 10 1 2 4 9 6 11

Goal: All elements < 𝑝 on left, all > 𝑝 on right

Start: unordered list

5 7 3 1 2 4 6 8 12 10 9 11



Partition, Procedure
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8 5 7 3 12 10 1 2 4 9 6 11

If Begin value <  𝑝, move Begin right

Else swap Begin value with End value, move End Left

Done when Begin = End

8 5 7 3 12 10 1 2 4 9 6 11

8 5 7 3 12 10 1 2 4 9 6 11

8 5 7 3 11 10 1 2 4 9 6 12
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8 5 7 3 11 10 1 2 4 9 6 12

8 5 7 3 6 10 1 2 4 9 11 12

8 5 7 3 6 10 1 2 4 9 11 12

8 5 7 3 6 10 1 2 4 9 11 12

If Begin value <  𝑝, move Begin right

Else swap Begin value with End value, move End Left

Done when Begin = End

Partition, Procedure
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8 5 7 3 6 4 1 2 10 9 11 12

Case 1: meet at element < 𝑝

 Swap 𝑝 with pointer position (2 in this case)

2 5 7 3 6 4 1 8 10 9 11 12

If Begin value <  𝑝, move Begin right

Else swap Begin value with End value, move End Left

Done when Begin = End

Partition, Procedure
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8 5 7 3 6 4 1 2 10 9 11 12

Case 2: meet at element > 𝑝

 Swap 𝑝 with value to the left (2 in this case)

2 5 7 3 6 4 1 8 10 9 11 12

If Begin value <  𝑝, move Begin right

Else swap Begin value with End value, move End Left

Done when Begin = End

Partition, Procedure



Partition Summary

1. Put 𝑝 at beginning of list

2. Put a pointer (Begin) just after 𝑝, and a pointer (End) at the end of 
the list

3. While Begin < End:
1. If Begin value <  𝑝, move Begin right

2. Else swap Begin value with End value, move End Left

4. If pointers meet at element < 𝑝: Swap 𝑝 with pointer position

5. Else If pointers meet at element > 𝑝: Swap 𝑝 with value to the left
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Run time? 𝑂(𝑛)



Conquer

Recursively sort Left and Right sublists
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2 5 7 3 6 4 1 8 10 9 11 12

All elements < 𝑝 All elements > 𝑝

Exactly where it belongs!



Quicksort Run Time (Best)

Then we divide in half each time
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2 5 1 3 6 4 7 8 10 9 11 12

2 1 3 5 6 4 7 8 9 10 11 12

𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛

If the pivot is always the median:

𝑇 𝑛 = 𝑂(𝑛 log 𝑛)



Quicksort Run Time (Worst)

Then we shorten by 1 each time
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1 5 2 3 6 4 7 8 10 9 11 12

1 2 3 5 6 4 7 8 10 9 11 12

𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑛

If the pivot is always at the extreme:

𝑇 𝑛 = 𝑂(𝑛2)



Quicksort Run Time (Worst)
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𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑛

𝑇 𝑛 = 𝑂(𝑛2)

𝑛

𝑛 − 1

…

1

𝑛 − 2

𝑛

𝑛 − 1

𝑛 − 2

1

𝑇 𝑛 = 1 + 2 + 3 + ⋯ + 𝑛

𝑇 𝑛 =
𝑛 𝑛 + 1

2



Quicksort on a (nearly) Sorted List

So we shorten by 1 each time
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1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑛

First element always yields unbalanced pivot

𝑇 𝑛 = 𝑂(𝑛2)



Good Pivot

• What makes a good Pivot?
• Roughly even split between left and right

• Ideally: median

• There are ways to find the median in linear time, but it’s complicated 
and slow and you’re better off using mergesort

• In Practice:
• Pick a random value as a pivot

• Pick the middle of 3 random values as the pivot
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Properties of Quick Sort

• Worst Case Running time:
• Θ(𝑛2)

• But Θ(𝑛 log 𝑛) average! And typically faster than mergesort!

• In-Place?
• ….Debatable

• Adaptive?
• No!

• Stable?
• No! 



More Formal Definition

• Input:
• An array 𝐴 of items

• A comparison function for these items
• Given two items 𝑥 and 𝑦, we can determine whether 𝑥 < 𝑦, 𝑥 > 𝑦, or 𝑥 = 𝑦

• Output:
• A permutation of 𝐴 such that if 𝑖 ≤ 𝑗 then 𝐴 𝑖 ≤ 𝐴[𝑗]

• Permutation: a sequence of the same items but perhaps in a different order



Improving Running time

• Recall our definition of the sorting problem:
• Input:

• An array 𝐴 of items
• A comparison function for these items

• Given two items 𝑥 and 𝑦, we can determine whether 𝑥 < 𝑦, 𝑥 > 𝑦, or 𝑥 = 𝑦

• Output:
• A permutation of 𝐴 such that if 𝑖 ≤ 𝑗 then 𝐴 𝑖 ≤ 𝐴[𝑗]

• Under this definition, it is impossible to write an algorithm faster than 
𝑛 log 𝑛 asymptotically.

• Observation:
• Sometimes there might be ways to determine the position of values without 

comparisons!



“Linear Time” Sorting Algorithms

• Useable when you are able to make additional assumptions about the 
contents of your list (beyond the ability to compare)
• Examples:

• The list contains only positive integers less than 𝑘

• The number of distinct values in the list is much smaller than the length of the list

• The running time expression will always have a term other than the 
list’s length to account for this assumption
• Examples:

• Running time might be Θ(𝑘 ⋅ 𝑛) where 𝑘 is the range/count of values



BucketSort

• Assumes the array contains integers between 0 and 𝑘 − 1 (or some 
other small range)

• Idea:
• Use each value as an index into an array of size 𝑘

• Add the item into the “bucket” at that index (e.g. linked list)

• Get sorted array by “appending” all the buckets

3
3

2
2
2

0 1 2 3

1
1

0
0
0
0
0

0 2 3 0 0 1 2 1 3 0 2 0 0 0 0 0 0 1 1 2 2 2 3 3



BucketSort Running Time

• Create array of 𝑘 buckets
• Either Θ(𝑘) or Θ(1) depending on some things…

• Insert all 𝑛 things into buckets
• Θ(𝑛)

• Empty buckets into an array
• Θ(𝑛 + 𝑘)

• Overall:
• Θ 𝑛 + 𝑘

• When is this better than mergesort?



Properties of BucketSort

• In-Place?
• No

• Adaptive?
• No

• Stable?
• Yes! 



RadixSort
• Radix: The base of a number system

• We’ll use base 10, most implementations will use larger bases

• Idea: 
• BucketSort by each digit, one at a time, from least significant to most significant

Place each element into 
a “bucket” according to 
its 1’s place

103 801 401 323 255 823 999 101

0 1 2 3 4 5 6 7

113 901 555 512 245 800 018 121

8 9 10 11 12 13 14 15

999018
255
555
245

103
323
823
113

512

0 1 2 3 4 5 6 7

801
401
101
901
121

800

8 9



RadixSort
• Radix: The base of a number system

• We’ll use base 10, most implementations will use larger bases

• Idea: 
• BucketSort by each digit, one at a time, from least significant to most significant

Place each element into 
a “bucket” according to 
its 10’s place

999018
255
555
245

103
323
823
113

512

0 1 2 3 4 5 6 7

801
401
101
901
121

800

8 9

999
255
555

245
121
323
823

0 1 2 3 4 5 6 7

512
113
018

800
801
401
101
901
103

8 9



RadixSort
• Radix: The base of a number system

• We’ll use base 10, most implementations will use larger bases

• Idea: 
• BucketSort by each digit, one at a time, from least significant to most significant

Place each element into 
a “bucket” according to 
its 100’s place

999
255
555

245
121
323
823

0 1 2 3 4 5 6 7

512
113
018

800
801
401
101
901
103

8 9
901
999

800
801
823

512
555

401323
245
255

0 1 2 3 4 5 6 7

101
103
113
121

018

8 9



RadixSort
• Radix: The base of a number system

• We’ll use base 10, most implementations will use larger bases

• Idea: 
• BucketSort by each digit, one at a time, from least significant to most significant

Convert back into an array
901
999

800
801
823

512
555

401323
245
255

0 1 2 3 4 5 6 7

101
103
113
121

018

8 9

018 811 103 113 121 245 255 323

0 1 2 3 4 5 6 7

401 512 555 800 801 823 901 999

8 9 10 11 12 13 14 15



RadixSort Running Time

• Suppose largest value is 𝑚

• Choose a radix (base of representation) 𝑏

• BucketSort all 𝑛 things using 𝑏 buckets
• Θ(𝑛 + 𝑘)

• Repeat once per each digit
• log𝑏 𝑚 iterations

• Overall:
• Θ 𝑛 log𝑏 𝑚 + 𝑏 log𝑏 𝑚

• In practice, you can select the value of 𝑏 to optimize running time

• When is this better than mergesort?



ARPANET

28



Undirected Graphs

29

1

2

3

4

5

6
7

9

8

Definition: 𝐺 = (𝑉, 𝐸)
Vertices/Nodes

Edges

𝑉 = {1,2,3,4,5,6,7,8,9}

𝐸 = { 1,2 , 2,3 , (1,3), … }



Directed Graphs
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Definition: 𝐺 = (𝑉, 𝐸)
Vertices/Nodes

Edges

𝑉 = {1,2,3,4,5,6,7,8,9}

𝐸 = { 1,2 , 2,3 , (1,3), … }

1

2

3

4

5

6
7

9

8



Self-Edges and Duplicate Edges
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1

2

3

4

5

6
7

9

8

Some graphs may have duplicate edges (e.g. here we have the edge (1,2) twice).
Some may also have self-edges (e.g. here there is an edge from 1 to 1).
Graph with  Neither self-edges nor duplicate edges are called simple graphs



Weighted Graphs
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10

2

6

11

9
5

8

3

7

3

1

8

12

91

2

3

4

5

6
7

9

8

Definition: 𝐺 = (𝑉, 𝐸)
Vertices/Nodes

Edges
𝑤 𝑒 = weight of edge 𝑒

𝑉 = {1,2,3,4,5,6,7,8,9}

𝐸 = { 1,2 , 2,3 , (1,3), … }



Graph Applications

• For each application below, consider:
• What are the nodes, what are the edges?

• Is the graph directed?

• Is the graph simple?

• Is the graph weighted?

• Facebook friends

• Twitter followers

• Java inheritance

• Airline Routes



Some Graph Terms

• Adjacent/Neighbors
• Nodes are adjacent/neighbors if they share an 

edge

• Degree
• Number of “neighbors” of a vertex

• Indegree
• Number of incoming neighbors

• Outdegree
• Number of outgoing neighbors

1

2

3

4

5

6
7

9

8

1

2

3

4

5

6
7

9

8



Graph Operations

• To represent a Graph (i.e. build a data structure) we need:
• Add Edge

• Remove Edge

• Check if Edge Exists

• Get Neighbors (incoming)

• Get Neighbors (outgoing)



Adjacency List
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1

2

3

4

5

6
7

9

8

1

2

3

4

5

6

7

8

9

2 3

1 3 5

1 2 4 6

3 5 6

2 4 7 8

3 4 7

5 6 8 9

5 7 9

7 8

Time/Space Tradeoffs
Space to represent: Θ(𝑛 + 𝑚)
Add Edge: Θ(1)
Remove Edge: Θ(1)
Check if Edge Exists: Θ(𝑛)
Get Neighbors (incoming): Θ(𝑛 + 𝑚)
Get Neighbors (outgoing): Θ deg 𝑣

𝑉 = 𝑛 
𝐸 = 𝑚 



Adjacency List (Weighted)
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1

2

3

4

5

6

7

8

9

2 3

1 3 5

1 2 4 6

3 5 6

2 4 7 8

3 4 7

5 6 8 9

5 7 9

7 8

10

2

6

11

95

8

3

7

3

1

8

12

91

2

3

4

5

6
7

9

8

Time/Space Tradeoffs
Space to represent: Θ(𝑛 + 𝑚)
Add Edge: Θ(1)
Remove Edge: Θ(1)
Check if Edge Exists: Θ(𝑛)
Get Neighbors (incoming): Θ(? )
Get Neighbors (outgoing): Θ(? )

𝑉 = 𝑛 
𝐸 = 𝑚 



Adjacency Matrix
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A

B

C

D

E

F

G

H

I

A B C D E F G H I

1 1

1 1 1

1 1 1

1 1 1

1 1 1 1

1 1 1

1 1 1 1

1 1 1

1 1

1

1

2

3

4

5

6
7

9

8

Time/Space Tradeoffs
Space to represent: Θ(? )
Add Edge: Θ(? )
Remove Edge: Θ(? )
Check if Edge Exists: Θ(? )
Get Neighbors (incoming): Θ(? )
Get Neighbors (outgoing): Θ ?

𝑉 = 𝑛 
𝐸 = 𝑚 



Adjacency Matrix (weighted)
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A

B

C

D

E

F

G

H

I

A B C D E F G H I

1 1

1 1 1

1 1 1

1 1 1

1 1 1 1

1 1 1

1 1 1 1

1 1 1

1 1

1

Time/Space Tradeoffs
Space to represent: Θ(𝑛2)
Add Edge: Θ(1)
Remove Edge: Θ(1)
Check if Edge Exists: Θ(1)
Get Neighbors (incoming): Θ(𝑛)
Get Neighbors (outgoing): Θ 𝑛

𝑉 = 𝑛 
𝐸 = 𝑚 

10

2

6

11

95

8

3

7

3

1

8

12

91

2

3

4

5

6
7

9

8



Aside

• Almost always, adjacency lists are the better choice

• Most graphs are missing most of their edges, so the adjacency list is 
much more space efficient and the slower operations aren’t that bad



Definition: Path
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10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

A sequence of nodes (𝑣1, 𝑣2, … , 𝑣𝑘) 
s.t. ∀1 ≤ 𝑖 ≤ 𝑘 − 1, 𝑣𝑖 , 𝑣𝑖+1 ∈ 𝐸

Simple Path:
A path in which each node 
appears at most once

Cycle:
A path which starts and 
ends in the same place



Definition: (Strongly) Connected Graph

42

A Graph 𝐺 = (𝑉, 𝐸) s.t. for any pair of nodes 
𝑣1, 𝑣2 ∈ 𝑉 there is a path from 𝑣1 to 𝑣2

1

2

3

4

5

6
7

9

8

1

2

3

4

5

6
7

9

8



Definition: (Strongly) Connected Graph

43

A Graph 𝐺 = (𝑉, 𝐸) s.t. for any pair of nodes 
𝑣1, 𝑣2 ∈ 𝑉 there is a path from 𝑣1 to 𝑣2

1

2

3

4

5

6
7

9

8

1

2

3

4

5

6
7

9

8

Connected Not (strongly) Connected



Definition: Weakly Connected Graph

44

A Graph 𝐺 = (𝑉, 𝐸) s.t. for any pair of nodes 
𝑣1, 𝑣2 ∈ 𝑉 there is a path from 𝑣1 to 𝑣2 
ignoring direction of edges

1

2

3

4

5

6
7

9

8

Weakly Connected

1

2

3

4

5

6
7

9

8

Weakly Connected



Definition: Complete Graph

45

A Graph 𝐺 = (𝑉, 𝐸) s.t. for any pair of nodes 
𝑣1, 𝑣2 ∈ 𝑉 there is an edge from 𝑣1 to 𝑣2

Complete 
Undirected Graph

Complete 
Directed Graph

1 2

3 4

1 2

3 4

Complete Directed 
Non-simple Graph

1 2

3 4



Graph Density, Data Structures, Efficiency

• The maximum number of edges in a graph is Θ |𝑉|2 :

• Undirected and simple: 
|𝑉|(|𝑉|−1)

2

• Directed and simple: |𝑉|(|𝑉| − 1)

• Direct and non-simple (but no duplicates): |𝑉|2

• If the graph is connected, the minimum number of edges is 𝑉 − 1

• If 𝐸 ∈ Θ 𝑉 2  we say the graph is dense

• If 𝐸 ∈ Θ |𝑉|  we say the graph is sparse

• Because 𝐸  is not always near to 𝑉 2 we do not typically substitute 
𝑉 2 for 𝐸  in running times, but leave it as a separate variable



Definition: Tree

47

A Graph 𝐺 = (𝑉, 𝐸) is a tree if it is undirect, 
connected, and has no cycles (i.e. is acyclic).
Often one node is identified as the “root”

A Tree

1

2

3

4

5

6
7

9

8

A Rooted Tree

1

2

3

4

56

7 9

8


	Slide 1: CSE 332 Autumn 2023 Lecture 16: Sorting
	Slide 2: Quicksort
	Slide 3: Quicksort
	Slide 4: Partition (Divide step)
	Slide 5: Partition, Procedure
	Slide 6
	Slide 7: Partition, Procedure
	Slide 8: Partition, Procedure
	Slide 9: Partition Summary
	Slide 10: Conquer
	Slide 11: Quicksort Run Time (Best)
	Slide 12: Quicksort Run Time (Worst)
	Slide 13: Quicksort Run Time (Worst)
	Slide 14: Quicksort on a (nearly) Sorted List
	Slide 15: Good Pivot
	Slide 16: Properties of Quick Sort
	Slide 17: More Formal Definition
	Slide 18: Improving Running time
	Slide 19: “Linear Time” Sorting Algorithms
	Slide 20: BucketSort
	Slide 21: BucketSort Running Time
	Slide 22: Properties of BucketSort
	Slide 23: RadixSort
	Slide 24: RadixSort
	Slide 25: RadixSort
	Slide 26: RadixSort
	Slide 27: RadixSort Running Time
	Slide 28: ARPANET
	Slide 29: Undirected Graphs
	Slide 30: Directed Graphs
	Slide 31: Self-Edges and Duplicate Edges
	Slide 32: Weighted Graphs
	Slide 33: Graph Applications
	Slide 34: Some Graph Terms
	Slide 35: Graph Operations
	Slide 36: Adjacency List
	Slide 37: Adjacency List (Weighted)
	Slide 38: Adjacency Matrix
	Slide 39: Adjacency Matrix (weighted)
	Slide 40: Aside
	Slide 41: Definition: Path
	Slide 42: Definition: (Strongly) Connected Graph
	Slide 43: Definition: (Strongly) Connected Graph
	Slide 44: Definition: Weakly Connected Graph
	Slide 45: Definition: Complete Graph
	Slide 46: Graph Density, Data Structures, Efficiency
	Slide 47: Definition: Tree

