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Dictionary Data Structures

Data Structure Time to find Time to delete

Unsorted Array O(n) O(n) O(n)
Unsorted Linked List O(n) O(n) O(n)
Sorted Array O(n) O(logn) O(n)
Sorted Linked List O(n) O(n) O(n)
Binary Search Tree O(n) O(n) O(n)
AVL Tree O(logn) O(logn) O(logn)
Hash Table (Worst case) O(n) O(n) O(n)
Hash Table (Average) 0(1) 0(1) 0(1)



Hash Tables

e |dea:

* Have a small array to store information
e Use a[l]\j\,sh functic@to convert the key into an index

* Hash function should “scatter” the keys, behave as if it randomly assigned keys to indices
» Store key at the index given by the hash function

* Do something if two keys map to the same place (should be very rare)
* Collision resolution

Index Insert / find /
h(k) between 0 delete & value
and size-1

Key Object



What Influences Running time?

* How “spread out” our input keys are
* How much do keys repeat

* Hash the function itself will take time

* Size of the table relative to the number things inserted
 How well our hash function scatters the keys

* What do we do when two things hash to the same spot



Properties of a “Good” Hash

e Definition: A hash function maps objects to integers

e Should be very efficient
e Calculating the hash should be negligible

* Should randomly scatter objects

* Objects that are similar to each other should be likely to end up far away

* Should use the entire table
« There should not be any indices in the table that nothing can hash to
* Picking a table size that is prime helps with this

* Should use things needed to “identify” the object
* Use only fields you would check for a .equals method be included in calculating the hash
* More fields typically leads to fewer collisions, but less efficient calculation




Eollision Resolution
L - L
* A Collision occurs when we want to insert something into an already-
occupied position in the hash table ——

* 2 main strategies:

f__/

» Separate Chaining

* Use a secondary data structure to contain the items
* E.g. eachindexin the hash table is itself a linked list

* Open Addressing
f * Use a different spot in the table instead l

* Linear Probing

* Quadratic Probing

* Double Hashing ><




Separate Chaining Insert

* To msertM
* Compute the index using i = h(k) % size

« Add the key-value pair to the data st’rdttur!e at tablel|i]
L’-—\/ L_—\.

k,v ;ij




Separate Chaining Find

e To find k'

. Compute the index using i —/z(k) % size
« Call find with the key on the data structure at table][i]

e

k,v

k,v k,v
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Separate Chaining Delete

* To delete k:
e Compute the index using i = h(k) % size
* Call delete with the key on the data structure at table|i]

k,v
k,v k,v
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Formal Running Time Analysis

* The load factor of a hash table represents the average number of
items per “bucket”

[ J A f— L
Size

* Assume we have a has table that uses a linked-list for separate
chaining
* What is the expected number of comparisons needed in an unsuccessful find?
* In general: an unsuccessful find will be linear in the length of the list we hash to

* A

 What is the expected number of comparisons needed in a successful find?
A

2
* How can we make the expected running time ©(1)?
 We need to make A constant
* Make the size of the hash proportional to the number of things in it



Load Factor?




Load Factor?
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Load Factor?
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Collision Resolution: Linear Probing

* When there’s a collision, use the next open space in the table

@017z<3>§1)5<é<‘>7<8 9)




Linear Probing: Insert Procedure

* Toinsert k, v
* Calculate i = h(k) % size

* If table|i] is 6ccupied then try, 0 Slze
: |#fh’a’/a 9 i

tis occupied try (i + 2)% size

* |f that is occupied tr@}’/o size




Linear Probing: Find M T

e i = h(k)%size

* |If i has the key or it’s empty, then we’re done

* Otherwise: </‘/7 7 / /

* Check (i + 1)%size if it’s there, done else
e Check (i + 2)%size if it’s there, done else
* Check (i + 3)%size

e Until we hit an empty cell

- N <L |




Linear Probing: Find

* To find key k
 Calculatei = h(k) % size
* |f table|i] is occupied and does not contain k then look at (i + 1) % size
* |f that is occupied and does not contain k then look at (i + 2) % size
* |f that is occupied and does not contain k then look at (i + 3) % size
* Repeat until you either find k or else you reach an empty cell in the table



Linear Probing: Delete

* Problem: don’t want to leave an empty space when deleting

e Option 1: when we delete, move the “last thing” with a matching
hash to that location

* Option 2: “tombstone” deletion. When deleting something, leave a
special marker to indicate something used to be there



Linear Probing: Delete

e Option 1: Find the last thing with a matching hash, move that into the
spot you deleted from

e Option 2: Called “tombstone” deletion. Leave a special object that
indicates an object was deleted from there

 The tombstone does not act as an open space when finding (so keep looking
after its reached)

 When inserting you ¢ nf'eplace a tombstone with a new item

k,v k,vik,v Mk,v
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Downsides of Linear Probing

——_\

* What happens when A approaches 17
* Runnings times get longer and longer

* What happens when A exceeds 17
* Run out of space

* We need a really small 4

e/




Quadratic Probing: Insert Procedure

e Toinsert k, v
 Calculatei = h(k) % size
e If table[i] is occupied then try (i + 1%)% size
If that is occupied try (i + 2%)% size
If that is occupied try (i + 3%)% size
If that is occupied try (i + 4%)% size




Quadratic Probing: Example

* |Insert:
. 76
* 40
. 48
5
* 55
« 47




Using Quadratic Probing

* If you probe tablesize times, you start repeating the same indices

L 1 , .
e If tablesize is prime and A < > then you’re guaranteed to find an
open spot in at most tablesize /2 probes

* Helps with the clustering problem of linear probing, but does not help
if many things hash to the same value



Double Hashing: Insert Procedure

* Given h and g are both good hash functions

e Toinsert k, v
 Calculatei = h(k) % size
If table[i] is occupied then try (i + g(k)) % size
If that is occupied try (i +2- g(k))% size
If that is occupied try (i +3- g(k))% size
If that is occupied try (i + 4 - g(k))% size




Rehashing

e If your load factor A gets too large, copy everything over to a larger
hash table
* To do this: make a new array with a new hash function
* Re-insert all items into the new hash table with the new hash function

* New hash table should be “roughly” double the size (but probably still want it
to be prime)
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